精英家教网 > 高中数学 > 题目详情
椭圆被直线截得的弦长为________________
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知椭圆,且为常数),椭圆焦点在轴上,椭圆的长轴长与椭圆的短轴长相等,且椭圆与椭圆的离心率相等,则椭圆的方程为:                .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的离心率,则的值为:                  

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.椭圆与双曲线有相同的焦点,则的值是
A.B.1或-2C.1或D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆,以原点为圆心,椭圆的短半轴为半径的圆与直线相切.
(1)求椭圆C的方程;
(2)设轴对称的任意两个不同的点,连结交椭圆于另一点,证明:直线x轴相交于定点
(3)在(2)的条件下,过点的直线与椭圆交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知椭圆)的离心率,连接椭圆的四个顶点得到的菱形的面积为4.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过点的直线与椭圆相交另一点,若,求直线的倾斜角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知命题:方程表示焦点在y轴上的椭圆; 命题:直线
与抛物线 有两个交点
(I)若为真命题,求实数的取值范围
(II)若,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题满分12分).
如图,已知某椭圆的焦点是F1(-4,0)、F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件:|F2A|、|F2B|、|F2C|成等差数列.

(1)求该弦椭圆的方程;
(2)求弦AC中点的横坐标;
(3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

.如图,设F2为椭圆的右焦点,点P在椭圆上,△POF2是面积为的正三角形,则b2的值是     ▲    

查看答案和解析>>

同步练习册答案