精英家教网 > 高中数学 > 题目详情

.椭圆+=1(a>b>0)上一点A关于原点的对称点为BF为其右焦点,若AFBF,设∠ABF=,且∈[,],则该椭圆离心率的取值范围为

     A.[,1 )                        B.[,]

     C.[,1)                        D.[,]

 

【答案】

B

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•宿州一模)已知斜率为1的直线l与双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
相交于B、D两点,且BD的中点为M(1,3).
(1)求双曲线C的离心率;
(2)若双曲线C的右焦点坐标为(3,0),则以双曲线的焦点为焦点,过直线g:x-y+9=0上一点M作椭圆,要使所作椭圆的长轴最短,点M应在何处?并求出此时的椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•虹口区三模)已知圆G:x2+y2-2x-
2
y=0
经过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点F及上顶点B.
(1)求椭圆的方程;
(2)过椭圆外一点M(m,0)(m>a)倾斜角为
5
6
π
的直线l交椭圆于C、D两点,若右焦点F在以线段CD为直径的圆E的外部,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
3
,椭圆上的点到右焦点F的最近距离为2,若椭圆C与x轴交于A、B两点,M是椭圆C上异于A、B的任意一点,直线MA交直线l:x=9于G点,直线MB交直线l于H点.
(1)求椭圆C的方程;
(2)试探求以GH为直径的圆是否恒经过x轴上的定点?若经过,求出定点的坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆=1(a>b>0)的中心、右焦点、右顶点及右准线与x轴的交点依次为O、F、G、H,则||的最大值为

A.                  B.                  C.                  D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆=1(a>b>0)的焦点分别为F1(-1,0)、F2(1,0),右准线l交x轴于点A,且.

(1)试求椭圆的方程;

(2)过F1、F2分别作互相垂直的两直线与椭圆分别交于D、E、M、N四点(如图所示),试求四边形DMEN面积的最大值和最小值.

(文)已知函数f(x)=x3+bx2+cx,b、c∈R,且函数f(x)在区间(-1,1)上单调递增,在区间(1,3)上单调递减.

(1)若b=-2,求c的值;

(2)求证:c≥3;

(3)设函数g(x)=f′(x),当x∈[-1,3]时,g(x)的最小值是-1,求b、c的值.

查看答案和解析>>

同步练习册答案