精英家教网 > 高中数学 > 题目详情
8.若α是第四象限,则180°-α是第三象限角.

分析 由α所在的象限判断出-α所在的象限,再由任意角的定义判断180°-α所在的象限.

解答 解:∵α是第四象限的角,
∴-α是第一象限角,
则由任意角的定义知,180°-α是第三象限角.
故答案为:三象限角.

点评 本题考查象限角和任意角的定义,主要是对定义的理解,难度不大,注意符号与角的旋转方向有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.在△ABC中,a,b,c分别是角A,B,C的对边,向量$\overrightarrow{m}$=(cos(A-B),sin(A-B)),$\overrightarrow{n}$=(cosB,-sinB),且 $\overrightarrow{m}$•$\overrightarrow{n}$=-$\frac{3}{5}$.
(Ⅰ)求sinA的值;
(Ⅱ)若a=4$\sqrt{2}$,b=5,求角B的大小及向量$\overrightarrow{AB}$在$\overrightarrow{BC}$方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.执行如图所示的程序框图,输出的y值为(  )
A.15B.17C.19D.21

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.定义运算$|{\begin{array}{l}a&b\\ c&d\end{array}}|=ad-bc$,则符合条件$|{\begin{array}{l}z&{1+i}\\{-i}&{2i}\end{array}}|=0$的复数z的共轭复数$\overline z$在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=lnx-a(x-1),a∈R.
(1)求函数f(x)在点(1,f(1))点处的切线方程;
(2)当a=1时,求函数f(x)的极值点和极值;
(3)当x≥1时,f(x)≤$\frac{lnx}{x+1}$恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.通过$\widehat{{e}_{1}}$,$\widehat{{e}_{2}}$,…,$\widehat{{e}_{n}}$来判断模拟型拟合的效果,判断原始数据中是否存在可疑数据,这种分工称为(  )
A.回归分析B.独立性检验分析C.残差分析D.散点图分析

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知数列{an}是等差数列,若a2016+a2017<0,a2016•a2017<0,且数列{an}的前n项和Sn有最小值,那么Sn取得最小正值时,n等于(  )
A.4029B.4030C.4031D.4032

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知点P在函数$f(x)=ln({2x+1})+\frac{{{x^2}+x}}{8}$图象上,则函数f(x)在点P处切线倾斜角α的取值范围(  )
A.$[{\frac{π}{4},\frac{π}{2}})$B.$[{\frac{π}{4},\frac{3π}{4}}]$C.$[{\frac{π}{4},π})$D.$[{0,\frac{π}{4}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知y=f(x)是R上的奇函数,f(-1)=-1,且对任意x∈(-∞,0),f(x)=$\frac{1}{x}$f($\frac{x}{x-1}$)都成立.
(1)求f(-$\frac{1}{2}$)、f(-$\frac{1}{3}$)的值;
(2)设an=f($\frac{1}{n}$)(n∈N*),求数列{an}的递推公式和通项公式;
(3)记Tn=a1an+a2an-1+a3an-2+…+ana1,求$\underset{lim}{n→∞}$$\frac{{T}_{n+1}}{{T}_{n}}$的值.

查看答案和解析>>

同步练习册答案