精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,四边形为菱形, 底面为直线上一动点.

Ⅰ)求证:

Ⅱ)若 分别为线段 的中点,求证: 平面

Ⅲ)直线上是否存在点,使得平面平面?若存在,求出的值;若不存在,请说明理由.

【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析;(Ⅲ)答案见解析.

【解析】试题分析

(Ⅰ) 连,由菱形可得.又由平面可得从而可得平面,可证得. (Ⅱ) 取的中点 由题意可得 ,故四边形为平行四边形,所以由线面平行的判定定理可得平面. (Ⅲ)先假设存在满足条件的点.再进行推理,即过的延长线于,连可证得中, ,所以从而

试题解析

Ⅰ)证明:连结

因为四边形为菱形,

所以

因为平面 平面

所以

所以平面

平面,

所以

Ⅱ)证明:取的中点

因为为线段中点,

所以

因为四边形为菱形, 为线段的中点,

所以

所以

故四边形为平行四边形,

所以

又因为平面 平面

所以平面

Ⅲ)解:直线上存在点,使得平面平面,且.理由如下:

如图,过的延长线于,连

因为菱形

所以

因为底面 平面

所以

所以平面

又因为平面

故平面平面

因为在中,

所以

故直线上存在点,使得平面平面,且

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知圆 ,点.

(1)求经过点且与圆相切的直线的方程;

(2)过点的直线与圆相交于两点, 为线段的中点,求线段长度的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线关于轴对称,它的顶点在坐标原点,点在抛物线上.

(1)写出该抛物线的标准方程及其准线方程;

(2)过点作两条倾斜角互补的直线与抛物线分别交于不同的两点,求证:直线的斜率是一个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题:

①对立事件一定是互斥事件;②若A,B为两个随机事件,则P(A∪B)=P(A)+P(B);③若事件A,B,C彼此互斥,则P(A)+P(B)+P(C)=1;④若事件A,B满足P(A)+P(B)=1,则A与B是对立事件.

其中正确命题的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,AB=2,cosB= ,点D在线段BC上.

(1)若∠ADC= π,求AD的长;
(2)若BD=2DC,△ACD的面积为 ,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有下列说法:

①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适;

②用相关指数R2来刻画回归的效果,R2值越大,说明模型的拟合效果越好;

③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.

④在研究气温和热茶销售杯数的关系时,若求得相关指数R2≈0.85,则表明气温解释了15%的热茶销售杯数变化.

其中正确命题的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:max{a,b}= ,若实数x,y满足:|x|≤3,|y|≤3,﹣4x≤y≤ x,则max{|3x﹣y|,x+2y}的取值范围是(
A.[ ,7]
B.[0,12]
C.[3, ]
D.[0,7]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的右顶点与上顶点分别为,椭圆的离心率为,且过点.

(1)求椭圆的标准方程;

(2)如图,若直线与该椭圆交于两点,直线的斜率互为相反数.

①求证:直线的斜率为定值;

②若点在第一象限,设的面积分别为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C经过P(4,-2)Q(1,3)两点,且在y轴上截得的线段长为4,半径小于5.

)求直线PQ与圆C的方程;

)若直线l∥PQ,直线l与圆C交于点AB且以线段AB为直径的圆经过坐标原点,求直线l的方程.

查看答案和解析>>

同步练习册答案