A. | (-∞,3] | B. | (-∞,-3] | C. | [-3,+∞) | D. | (-3,+∞) |
分析 求出函数f(x)的导函数,由导函数在($\frac{1}{2}$,+∞)大于等于0恒成立解答案.
解答 解:由f(x)=x2+ax-$\frac{1}{x}$,得f′(x)=2x+a+$\frac{1}{{x}^{2}}$=$\frac{{2x}^{3}+{ax}^{2}+1}{{x}^{2}}$,
令g(x)=2x3+ax2+1,
要使函数f(x)在($\frac{1}{2}$,+∞)是增函数,
则g(x)=2x3+ax2+1在x∈($\frac{1}{2}$,+∞)大于等于0恒成立,
g′(x)=6x2+2ax=2x(3x+a),
①当a≥0时,g′(x)>0恒成立,
∴g(x)在($\frac{1}{2}$,+∞)单调递增,
∴g(x)>g($\frac{1}{2}$)=$\frac{5}{4}$+$\frac{a}{4}$>0,∴f′(x)>0,
∴f(x)在($\frac{1}{2}$,+∞)是增函数,满足条件;
②当-$\frac{3}{2}$≤a<0时,3x+a≥0,g′(x)≥0,
∴g(x)在($\frac{1}{2}$,+∞)单调递增,
∴g(x)>g($\frac{1}{2}$)=$\frac{5}{4}$+$\frac{a}{4}$>0,∴f′(x)>0,
∴f(x)在($\frac{1}{2}$,+∞)是增函数,满足条件;
③a<-$\frac{3}{2}$时,令g′(x)>0,解得:x>-$\frac{a}{3}$,令g′(x)<0,解得:$\frac{1}{2}$<x<-$\frac{a}{3}$,
∴g(x)在($\frac{1}{2}$,-$\frac{a}{3}$)递减,在(-$\frac{a}{3}$,+∞)递增,
∴g(x)min≥g(-$\frac{a}{3}$)=2×${(-\frac{a}{3})}^{3}$+a${(-\frac{a}{3})}^{2}$+1≥0,
解得:a≥-3,此时f′(x)>0,
∴f(x)在($\frac{1}{2}$,+∞)是增函数,满足条件;
综上:a≥-3;
故答案为:[-3,+∞).
点评 本题考查了二次函数的图象和性质,考查了导函数在求解含有参数问题中的应用,是中档题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{32}{3}$ | B. | $16-\frac{2π}{3}$ | C. | $\frac{40}{3}$ | D. | $16-\frac{8π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
使用年限x (年) | 2 | 3 | 4 | 5 | 6 |
维修费用y(万元) | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com