精英家教网 > 高中数学 > 题目详情
18.若函数f(x)=x2+ax-$\frac{1}{x}$在($\frac{1}{2}$,+∞)是增函数,则a的取值范围(  )
A.(-∞,3]B.(-∞,-3]C.[-3,+∞)D.(-3,+∞)

分析 求出函数f(x)的导函数,由导函数在($\frac{1}{2}$,+∞)大于等于0恒成立解答案.

解答 解:由f(x)=x2+ax-$\frac{1}{x}$,得f′(x)=2x+a+$\frac{1}{{x}^{2}}$=$\frac{{2x}^{3}+{ax}^{2}+1}{{x}^{2}}$,
令g(x)=2x3+ax2+1,
要使函数f(x)在($\frac{1}{2}$,+∞)是增函数,
则g(x)=2x3+ax2+1在x∈($\frac{1}{2}$,+∞)大于等于0恒成立,
g′(x)=6x2+2ax=2x(3x+a),
①当a≥0时,g′(x)>0恒成立,
∴g(x)在($\frac{1}{2}$,+∞)单调递增,
∴g(x)>g($\frac{1}{2}$)=$\frac{5}{4}$+$\frac{a}{4}$>0,∴f′(x)>0,
∴f(x)在($\frac{1}{2}$,+∞)是增函数,满足条件;
②当-$\frac{3}{2}$≤a<0时,3x+a≥0,g′(x)≥0,
∴g(x)在($\frac{1}{2}$,+∞)单调递增,
∴g(x)>g($\frac{1}{2}$)=$\frac{5}{4}$+$\frac{a}{4}$>0,∴f′(x)>0,
∴f(x)在($\frac{1}{2}$,+∞)是增函数,满足条件;
③a<-$\frac{3}{2}$时,令g′(x)>0,解得:x>-$\frac{a}{3}$,令g′(x)<0,解得:$\frac{1}{2}$<x<-$\frac{a}{3}$,
∴g(x)在($\frac{1}{2}$,-$\frac{a}{3}$)递减,在(-$\frac{a}{3}$,+∞)递增,
∴g(x)min≥g(-$\frac{a}{3}$)=2×${(-\frac{a}{3})}^{3}$+a${(-\frac{a}{3})}^{2}$+1≥0,
解得:a≥-3,此时f′(x)>0,
∴f(x)在($\frac{1}{2}$,+∞)是增函数,满足条件;
综上:a≥-3;
故答案为:[-3,+∞).

点评 本题考查了二次函数的图象和性质,考查了导函数在求解含有参数问题中的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.几何体三视图如图所示,则该几何体的体积为(  )
A.$\frac{32}{3}$B.$16-\frac{2π}{3}$C.$\frac{40}{3}$D.$16-\frac{8π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的体积为$\frac{32}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.给出最小二乘法下的回归直线方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$系数公式:
$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-b$\overline{x}$
假设关于某设备的使用年限x(年)和所支出的维修费用y(万元),有如表的统计资料:
使用年限x (年)23456
维修费用y(万元)2.23.85.56.57.0
若由资料可知y对x呈线性相关关系,试求:
(1)线性回归直线方程;
(2)根据回归直线方程,估计使用年限为12年时,维修费用是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某市利用历史资料算得煤气年消耗量y(单位:万立方米)与使用煤气户数x(单位:万户)之间的回归直线方程为:$\widehaty$=$\frac{170}{23}$x-$\frac{31}{23}$.若市政府下一步再扩大2300煤气用户,试利用回归直线方程估计该市年煤气消耗量将增加0.35万立方米.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\frac{lnx+(x-b)^{2}}{x}$(b∈R).若存在x∈[$\frac{1}{2}$,2],使得f(x)>-x•f′(x),则实数b的取值范围是(-∞,$\frac{9}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x3-$\sqrt{a}$x2+|ax|-5(a≥0).
(1)当a=4时,求函数f(x)的单调递减区间;
(2)若函数f(x)有且只有一个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知以点C(t,$\frac{3}{t}}$)(t∈R,t≠0)为圆心的圆过原点O.
(Ⅰ) 设直线3x+y-4=0与圆C交于点M、N,若|OM|=|ON|,求圆C的方程;
(Ⅱ) 在(Ⅰ)的条件下,设B(0,2),且P、Q分别是直线l:x+y+2=0和圆C上的动点,求|PQ|-|PB|的最大值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=e|x|cosx的图象大致是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案