精英家教网 > 高中数学 > 题目详情
5.已知$f(x)=\frac{2^x}{{1+{2^x}}}-\frac{1}{2}$,若[x]是不超过x的最大整数,则函数y=[f(x)]-[f(-x)]的值域为(  )
A.[-1,0]B.{-1,1}C.{-1,0,1}D.[-1,1]

分析 分离常数便可得到$f(x)=\frac{1}{2}-\frac{1}{1+{2}^{x}},f(-x)=-\frac{1}{2}+\frac{1}{1+{2}^{x}}$,根据2x>0,从而可以求出$\frac{1}{1+{2}^{x}}$的范围,进一步便可得到$-\frac{1}{2}<f(x)<\frac{1}{2}$,这样根据[x]的定义便可分:$-\frac{1}{2}<f(x)<0$,f(x)=0和$0<f(x)<\frac{1}{2}$三种情况求出[f(x)]和[f(-x)],从而可以得出y值,这样即可求出函数y=[f(x)]-[f(-x)]的值域.

解答 解:$f(x)=\frac{1}{2}-\frac{1}{1+{2}^{x}}$,$f(-x)=-\frac{1}{2}+\frac{1}{1+{2}^{x}}$;
2x>0;
∴$0<\frac{1}{1+{2}^{x}}<1$;
∴$-\frac{1}{2}<f(x)<\frac{1}{2}$,$-\frac{1}{2}<f(-x)<\frac{1}{2}$;
∴①$-\frac{1}{2}<f(x)<0$时,$-\frac{1}{2}<\frac{1}{2}-\frac{1}{1+{2}^{x}}<0$;
$0<-\frac{1}{2}+\frac{1}{1+{2}^{x}}<\frac{1}{2}$;
即$0<f(-x)<\frac{1}{2}$;
∴[f(x)]=-1,[f(-x)]=0;
∴[f(x)]-[f(-x)]=-1;
②f(x)=0时,$\frac{1}{2}-\frac{1}{1+{2}^{x}}=0$;
∴f(-x)=0;
∴[f(x)]=0,[f(-x)]=0;
∴[f(x)]-[f(-x)]=0;
③$0<f(x)<\frac{1}{2}$时,$0<\frac{1}{2}-\frac{1}{1+{2}^{x}}<\frac{1}{2}$;
∴$-\frac{1}{2}<-\frac{1}{2}+\frac{1}{1+{2}^{x}}<0$;
即$-\frac{1}{2}<f(-x)<0$;
∴[f(x)]=0,[f(-x)]=-1;
∴[f(x)]-[f(-x)]=0-(-1)=1;
∴综上得,函数y=[f(x)]-[f(-x)]的值域为{-1,0,1}.
故选:C.

点评 考查函数值域的概念,指数函数的值域,根据不等式的性质求函数的取值范围的方法,理解[x]的定义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.若第一象限内的点A(x、y)落在经过点(6,-2)且斜率是-$\frac{2}{3}$的直线上,则log${\;}_{\frac{3}{2}}$x+log${\;}_{\frac{3}{2}}$y有(  )
A.最大值1B.最大值$\frac{3}{2}$C.最小值$\frac{3}{2}$D.最小值1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知M(x0,y0)是双曲线C:$\frac{{x}^{2}}{2}$-y2=1上的一点,F1、F2是C上的两个焦点,若∠F1MF2为钝角,则y0的取值范围是$(-\frac{{\sqrt{3}}}{3},0)∪(0,\frac{{\sqrt{3}}}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.关于x的方程x+log2x=[x]([x]表示不大于x的最大整数)的解有(  )个.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(x)=x+$\frac{1}{x}$
(1)判断函数f(x)的奇偶性;
(2)用函数单调性定义证明:f(x)在(0,1)上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知定义域为R的函数f(x)=$\frac{{-{2^x}+b}}{{{2^{x+1}}+a}}$是奇函数.
(1)求实数a,b的值;
(2)判断函数f(x)的单调性,并说明理由;
(3)若对任意的t∈(1,4),不等式$f(4-k\sqrt{t})+f(t)>0$恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知角α的终边经过点(-4,3),则sinα=$\frac{3}{5}$,cosα=-$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知椭圆C:$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{2}$=1,过E(x0,0)的直线l与椭圆C交于A,B两点,若$\frac{1}{|EA{|}^{2}}$+$\frac{1}{|EB{|}^{2}}$为定值m,则x0=$\sqrt{3}$;m=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图是函数f(x)=Asin(2x+φ)(A>0,|φ|≤$\frac{π}{2}$)图象的一部分,对不同的x1,x2∈[a,b],若f(x1)=f(x2),有f(x1+x2)=$\sqrt{3}$,则φ的值为$\frac{π}{3}$.

查看答案和解析>>

同步练习册答案