【题目】在城市生活节奏超快的时代,自驾游出行已经成了当今许多家庭缓解压力的一种方式,某地区8户爱好自驾游家庭的年收入与年旅游支出的统计资料如下表所示:
年收入万元 |
|
|
| 14 |
|
|
| 13 |
年旅游支出万元 |
|
|
|
|
|
|
|
|
(1)若对呈线性相关关系,根据表中的数据求年旅游支出y关于年收入x的线性回归方程;注:计算结果保留两位小数.
(2)据行内统计数据显示,若家庭年旅游投入达到4万元,则在圈内被誉为“狂游家庭”,若该地区某户家庭的年收入为16万元,预测其是否能够步入“狂游家庭”行列.
参考公式及数据:
,;,
科目:高中数学 来源: 题型:
【题目】建设生态文明,是关系人民福祉,关乎民族未来的长远大计.某市通宵营业的大型商场,为响应节能减排的号召,在气温超过时,才开放中央空调降温,否则关闭中央空调.如图是该市夏季一天的气温(单位:)随时间(,单位:小时)的大致变化曲线,若该曲线近似的满足函数关系.
(1)求函数的表达式;
(2)请根据(1)的结论,判断该商场的中央空调应在本天内何时开启?何时关闭?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程。
已知曲线C:(t为参数), C:(为参数)。
(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;
(2)若C上的点P对应的参数为,Q为C上的动点,求中点到直线
(t为参数)距离的最小值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】瑞士著名数学家欧拉在1765年提出定理:三角形的外心、重心、垂心位于同一直线上.这条直线被后人称为三角形的“欧拉线”.在平面直角坐标系中作△ABC,AB=AC=4,点B(-1,3),点C(4,-2),且其“欧拉线”与圆M:相切,则下列结论正确的是( )
A.圆M上点到直线的最小距离为2
B.圆M上点到直线的最大距离为3
C.若点(x,y)在圆M上,则的最小值是
D.圆与圆M有公共点,则a的取值范围是
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有4名学生参加演讲比赛,有两个题目可供选择,组委会决定让选手通过掷一枚质地均匀的骰子选择演讲的题目,规则如下:选手掷出能被3整除的数则选择题目,掷出其他的数则选择题目.
(1)求这4个人中恰好有1个人选择题目的概率;
(2)用分别表示这4个人中选择题目的人数,记,求随机变量的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据国际海洋安全规定:两国军舰正常状况下(联合军演除外),在公海上的安全距离为20(即距离不得小于20),否则违反了国际海洋安全规定.如图,在某公海区域有两条相交成60°的直航线,,交点是,现有两国的军舰甲,乙分别在,上的,处,起初,,后来军舰甲沿的方向,乙军舰沿的方向,同时以40的速度航行.
(1)起初两军舰的距离为多少?
(2)试判断这两艘军舰是否会违反国际海洋安全规定?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为响应德智体美劳的教育方针,唐徕回中高一年级举行了由全体学生参加的一分钟跳绳比赛,计分规则如下:
每分钟跳绳个数 | 185以上 | ||||
得分 | 16 | 17 | 18 | 19 | 20 |
年级组为了了解学生的体质,随机抽取了100名学生,统计了他的跳绳个数,并绘制了如下样本频率直方图:
(1)现从这100名学生中,任意抽取2人,求两人得分之和小于35分的概率(结果用最简分数表示);
(2)若该校高二年级2000名学生,所有学生的一分钟跳绳个数近似服从正态分布,其中,为样本平均数的估计值(同一组中数据以这组数据所在区间的中点值为代表).利用所得到的正态分布模型解决以下问题:
①估计每分钟跳绳164个以上的人数(四舍五入到整数)
②若在全年级所有学生中随机抽取3人,记每分钟跳绳在179个以上的人数为,求的分布列和数学期望与方差.
(若随机变量服从正态分布则,,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某媒体为调查喜爱娱乐节目A是否与观众性别有关,随机抽取了30名男性和30名女性观众,抽查结果用等高条形图表示如图:
根据该等高条形图,完成下列2×2列联表,并用独立性检验的方法分析,能否在犯错误的概率不超过0.05的前提下认为喜欢娱乐节目A与观众性别有关?
喜欢节目A | 不喜欢节目A | 总计 | |
男性观众 | |||
女性观众 | |||
总计 | 60 |
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com