精英家教网 > 高中数学 > 题目详情

(本小题满分12分)已知函数,且 
(1)判断的奇偶性,并证明;
(2)判断上的单调性,并证明;
(3)若,求的取值范围。

(1) 为奇函数,见解析;(2)上的单调递增,证明:见解析;
(3)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)设定义域都为的两个函数的解析式分别为
(1)求函数的值域;
(2)求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题14分)已知函数的定义域为,且满足条件:
,②③当
1)、求的值
2)、讨论函数的单调性;
3)、求满足的x的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
(1)当时,求的单调区间;
(2)若时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,()。
(1)设,令,试判断函数上的单调性并证明你的结论;
(2)若的定义域和值域都是,求的最大值;
(3)若不等式恒成立,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求的单调递增区间;
(2)当时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
.已知函数 是奇函数.
(1)求实数的值;
(2)若函数在区间上单调递增,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分16分)定义在的函数
(1)对任意的都有
(2)当时,,回答下列问题:
①判断的奇偶性,并说明理由;
②判断的单调性,并说明理由;
③若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)若定义在上的函数同时满足下列三个条件:
①对任意实数均有成立;
; ③当时,都有成立。
(1)求的值;
(2)求证:上的增函数
(3)求解关于的不等式.

查看答案和解析>>

同步练习册答案