精英家教网 > 高中数学 > 题目详情

【题目】定义,已知函数定义域都是,给出下列命题:

1)若都是奇函数,则函数为奇函数;

2)若都是减函数,则函数为减函数;

3)若,,则

4)若都是周期函数,则函数是周期函数.

其中正确命题的个数为(

A.1B.2C.3D.4

【答案】B

【解析】

(1)(4)举出反例即可.(2)(3),根据单调性与最值的方法推理即可.

(1),,,,为偶函数,(1)错误

(2),因为函数定义域都是都是减函数,且函数的值为中的较小者,为减函数,故(2)正确.

(3),因为,,则,,

,所以.(3)正确.

(4),的最小正周期是无理数,的最小正周期是有理数,则不存在使得同时是最小正周期的整数倍.所以此时不是周期函数.(4)错误.

(2)(3)正确.

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是定义在区间上且同时满足如下条件的函数所组成的集合:

①对任意的,都有

②存在常数,使得对任意的,都有

1)设,试判断是否属于集合

2)若,如果存在,使得,求证:满足条件的是唯一的;

3)设,且,试求参数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在中,角的对边分别为,且.

(1)求的值;

(2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图一,在直角梯形中,分别为的三等分点,, ,若沿着折叠使得点重合,如图二所示,连结.

1)求证:平面平面

2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若内单调递减,求实数的取值范围;

(Ⅱ)若函数有两个极值点分别为,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设计一个随机试验,使一个事件的概率与某个未知数有关,然后通过重复试验,以频率估计概率,即可求得未知数的近似解,这种随机试验在数学上称为随机模拟法,也称为蒙特卡洛法。比如要计算一个正方形内部不规则图形的面积,就可以利用撒豆子,计算出落在不规则图形内部和正方形内部的豆子数比近似等于不规则图形面积与正方形面积比,从而近似求出不规则图形的面积.

统计学上还有一个非常著名的蒲丰投针实验:平面上间隔的平行线,向平行线间的平面上任意投掷一枚长为的针,通过多次实验可以近似求出针与任一平行线(以为例)相交(当针的中点在平行线外不算相交)的概率.以表示针的中点与最近一条平行线的距离,又以表示所成夹角,如图甲,易知满足条件:

由这两式可以确定平面上的一个矩形,如图乙,在图甲中,当满足___________之间的关系)时,针与平行线相交(记为事件).可用从实验中获得的频率去近似,即投针次,其中相交的次数为,则,历史上有一个数学家亲自做了这实验,他投掷的次数是5000,相交的次数为2550次,,依据这个实验求圆周率的近似值_________.(精确到3位小数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)设的极值点.求,并求的单调区间;

2)证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极点为直角坐标系的原点,极轴为轴正半轴且单位长度相同的极坐标系中曲线为参数).

(Ⅰ)求曲线上的点到曲线距离的最小值;

(Ⅱ)若把上各点的横坐标都扩大原来为原来的2倍,纵坐标扩大原来的倍,得到曲线,设,曲线交于两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)证明:

2)设上的极值点从小到大排列为,求证:时,

查看答案和解析>>

同步练习册答案