分析 运用等差数列的性质可得2an=an+1+an+2,令n=1可得a3+a2-2a1=0,设公比为q,由等比数列的通项公式,解方程可得q,再由等比数列的求和公式,计算可得前5项和S5.
解答 解:对任意的n∈N*,都有an+1、an、an+2成等差数列,
即有2an=an+1+an+2,
令n=1可得a3+a2-2a1=0,设公比为q,
则a1(q2+q-2)=0.
由q2+q-2=0解得q=-2或q=1(舍去),
则S5=$\frac{{a}_{1}(1-{q}^{5})}{1-q}$=$\frac{1-(-2)^{5}}{1-(-2)}$=11.
故答案为:11.
点评 本题考查等比数列和等差数列的通项、性质以及求和公式的运用,考查运算能力,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [-2,1] | B. | [0,3] | C. | [-1,2] | D. | [-$\sqrt{3}$,$\sqrt{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com