精英家教网 > 高中数学 > 题目详情

【题目】已知圆,过点作直线交圆两点,分别过两点作圆的切线,当两条切线相交于点时,则点的轨迹方程为__________

【答案】

【解析】考虑如下问题:已知C:x2+y2=r2(r>0)和点P(a,b).若点PC内,过P作直线lCA. B两点,分别过A. B两点作C的切线,当两条切线相交于点Q时,求点Q的轨迹方程.

C:x2+y2=r2的圆心C(0,0)

A(x1,y1),B(x2,y2),Q(x0,y0)

因为AQ与圆C相切,所以AQCA.

所以(x1x0)(x10)+(y1y0)(y10)=0

x21x0x1+y21y0y1=0

因为x21+y21=r2

所以x0x1+y0y1=r2

同理x0x2+y0y2=r2.

所以过点A,B的直线方程为xx0+yy0=r2.

因直线AB过点(a,b).

所以代入得ax0+by0=r2

所以点Q的轨迹方程为:ax+by=r2.

结合题意可知,点的轨迹方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以为极点, 轴的正半轴为极轴建立极坐标系.若直线的极坐标方程为,曲线的极坐标方程为,将曲线上所有点的横坐标缩短为原来的一半,纵坐标不变,然后再向右平移一个单位得到曲线

(Ⅰ)求曲线的直角坐标方程;

(Ⅱ)已知直线与曲线交于两点,点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】宝宝的健康成长是妈妈们最关心的问题,父母亲为婴儿选择什么品牌的奶粉一直以来都是育婴中的一个重要话题,为了解过程奶粉的知名度和消费者的信任度,某调查小组特别调查记录了某大型连锁超市2015年与2016年这两年销售量前5名的五个品牌奶粉的销量(单位:罐),绘制如下的管状图:

(1)根据给出的这两年销量的管状图,对该超市这两年品牌奶粉销量的前五强进行排名;

(2)分别计算这5个品牌奶粉2016年所占总销量(仅指这5个品牌奶粉的总销量)的百分比(百分数精确到各位),并将数据填入如下饼状图中的括号内;

(3)已知该超市2014年飞鹤奶粉的销量为(单位:罐),试以这3年的销量得出销量关于年份的线性回归方程,并据此预测2017年该超市飞鹤奶粉的销量.

相关公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直线与圆 且与椭圆相交于两点.

(1)若直线恰好经过椭圆的左顶点,求弦长

(2)设直线的斜率分别为,判断是否为定值,并说明理由

(3)求,面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨),一位居民的月用水量不超过的部分按平价收费,超过的部分按议价收费,为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照 ,…, 分成9组,制成了如图所示的频率分布直方图.

(1)求直方图中的值;

(2)若将频率视为概率,从该城市居民中随机抽取3人,记这3人中月均用水量不低于3吨的人数为,求的分布列与数学期望.

(3)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值(精确到0.01),并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD、ADEF为正方形,G,H是DF,FC的中点.
(1)求证:GH∥平面CDE;
(2)求证:BC⊥平面CDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中 为常数.

(1)若是函数的一个极值点,求曲线在点处的切线方程;

(2)若函数有2个零点, 有6个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且,记.

(1)求数列的通项公式;

(2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的方程:x2+y2﹣4x﹣6y+m=0,若圆C与直线a:x+2y﹣3=0相交于M、N两点,且|MN|=2
(1)求m的值;
(2)是否存在直线l:x﹣y+c=0,使得圆上有四点到直线l的距离为 ,若存在,求出c的范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案