【题目】如图,在平面直角坐标系中,已知椭圆C:(a>b>0)的短轴长为2,F1,F2分别是椭圆C的左、右焦点,过点F2的动直线与椭圆交于点P,Q,过点F2与PQ垂直的直线与椭圆C交于A、B两点.当直线AB过原点时,PF1=3PF2.
(1)求椭圆的标准方程;
(2)若点H(3,0),记直线PH,QH,AH,BH的斜率依次为,,,.
①若,求直线PQ的斜率;
②求的最小值.
【答案】(1)(2)①或②
【解析】
(1)已知条件有,直线AB过原点时,PQx轴,所以△PF1F2为直角三角形,利用椭圆定义和勾股定理可求得,得椭圆方程;
(2)①设直线PQ:,代入到椭圆方程得后化简,设P(,),Q(,),应用韦达定理得,,计算并代入可得;
②分类讨论,当这两条直线中有一条与坐标轴垂直时,,
当两条直线与坐标轴都不垂直时,由①知,同理可得,计算后应用基本不等式可得最小值.
解:(1)因为椭圆C:(a>b>0)的短轴长为2,所以b=1,
当直线AB过原点时,PQx轴,所以△PF1F2为直角三角形,
由定义知PF1+PF2=2a,而PF1=3PF2,故,,
由得,化简得a2=2,
故椭圆的方程为.
(2)①设直线PQ:,代入到椭圆方程得:,设P(,),Q(,),则,,
所以
所以,
解得:或,即为直线PQ的斜率.
②当这两条直线中有一条与坐标轴垂直时,,
当两条直线与坐标轴都不垂直时,
由①知,同理可得
故
,
当且仅当即k=1时取等号.
综上,的最小值为.
科目:高中数学 来源: 题型:
【题目】已知椭圆C:()的左、右焦点分别为、,离心率为,点P是椭圆C上的一个动点,且面积的最大值为.
(1)求椭圆C的方程;
(2)椭圆C与x轴交于A、B两点,直线和与直线l:分别交于点M,N,试探究以为直径的圆是否恒过定点,若是,求出所有定点的坐标:若否,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左顶点为,左、右焦点分别为,离心率为,是椭圆上的一个动点(不与左、右顶点重合),且的周长为6,点关于原点的对称点为,直线交于点.
(1)求椭圆方程;
(2)若直线与椭圆交于另一点,且,求点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱锥中,与均为等腰直角三角形,且,,为上一点,且平面.
(1)求证:;
(2)过作一平面分别交, , 于,,,若四边形为平行四边形,求多面体的表面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国在欧洲的某孔子学院为了让更多的人了解中国传统文化,在当地举办了一场由当地人参加的中国传统文化知识大赛,为了了解参加本次大赛参赛人员的成绩情况,从参赛的人员中随机抽取名人员的成绩(满分100分)作为样本,将所得数据进行分析整理后画出频率分布直方图如图所示,已知抽取的人员中成绩在[50,60)内的频数为3.
(1)求的值和估计参赛人员的平均成绩(保留小数点后两位有效数字);
(2)已知抽取的名参赛人员中,成绩在[80,90)和[90,100]女士人数都为2人,现从成绩在[80,90)和[90,100]的抽取的人员中各随机抽取2人,记这4人中女士的人数为,求的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线:的离心率,其左焦点到此双曲线渐近线的距离为.
(1)求双曲线的方程;
(2)若过点的直线交双曲线于两点,且以为直径的圆过原点,求圆的圆心到抛物线的准线的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣a|﹣|x﹣5|.
(1)当a=2时,求证:﹣3≤f(x)≤3;
(2)若关于x的不等式f(x)≤x2﹣8x+20在R恒成立,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com