精英家教网 > 高中数学 > 题目详情
18.中石化集团通过与安哥拉国家石油公司合作,获得了安哥拉深海油田区块的开采权,集团在某些区块随机初步勘探了部分口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井.以节约勘探费用.勘探初期数据资料见如表:
井号I123456
坐标(x,y)(km)(2,30)(4,40)(5,60)(6,50)(8,70)(1,y)
钻探深度(km)2456810
出油量(L)407011090160205
(1)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为y=6.5x+a,求a,并估计y的预报值;
(2)设出油量与勘探深度的比值k不低于20的勘探并称为优质井,那么在原有的出油量不低于50L的井中任意勘察3口井,求恰有2口是优质井的概率.

分析 (1)根据图中数据,计算$\overline{x}$、$\overline{y}$,根据回归直线过样本中心点,求出a与y的值;
(2)根据题意,利用列举法求出基本事件数,计算对应的概率值即可.

解答 解:(1)根据图中数据,计算$\overline{x}$=$\frac{1}{5}$×(2+4+5+6+8)=5,
$\overline{y}$=$\frac{1}{5}$×(30+40+60+50+70)=50,
因为回归直线必过样本中心点$(\overline x,\overline y)$,
求得$a=\overline y-b\overline x=50-6.5×5=17.5$;
所以y=6.5x+17.5,
x=10时,y=6.5×10+17.5=82.5,
即估计y的预报值为82.5;
(2)易知原有的出油量不低于50L的井中,
3、5、6这3口井是优质井,2、4这2口井为非优质井,
由题意从这5口井中随机选取3口井的可能情况有:
(2,3.,4),(2,3,5),(2,3,6),(2,4,5),(2,4,6),
(2,5,6),(3,4,5),(3,4,6),(3,5,6),(4,5,6)共10种,
其中恰有2口是优质井的有6中,
所以所求概率是$P=\frac{6}{10}=\frac{3}{5}$.

点评 本题考查了线性回归方程的应用问题,也考查了利用列举法求古典概型的概率问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,PA⊥⊙O面,PA=2,AB为⊙O的直径,其长为4,四边形ABCD内接于圆O,且∠ADC=120°.
(1)求点C到平面PAB的距离;
(2)当D在$\widehat{AC}$上什么位置时,BC∥平面POD;
(3)在(2)的条件下,求二面角D-PC-B的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{x^2}{2lnkx}$(k≠0)的图象在x=$\sqrt{e}$处的切线垂直于y轴.
(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)设函数g(x)=-$\frac{x^2}{2}+alnx+a\;({a>0})$,若对于?x1,x2∈(1,+∞),总有f(x1)≥g(x2)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=|x-a|,a∈R.
(Ⅰ)当a=2时,解不等式:f(x)≥6-|2x-5|;
(Ⅱ)若关于x的不等式f(x)≤4的解集为[-1,7],且两正数s和t满足2s+t=a,求证:$\frac{1}{s}+\frac{8}{t}≥6$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下面函数中在定义域内是奇函数和单调增函数的是(  )
A.y=e-x-exB.y=tanxC.y=x-3|x|D.y=ln(x+2)-ln(2-x)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设α,β是两个不重合的平面,a,b是两条不同的直线,给出下列条件:
①α,β都平行于直线a,b;
②a,b是α内的两条直线,且a∥β,b∥β;
③a与b相交,且都在α,β外,a∥α,a∥β,b∥α,b∥β.
其中可判定α∥β的条件是②③.(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A、B、C的对边分别为a、b、c,若$\overrightarrow m=(b,c-a)$,$\overrightarrow n=(sinC+sinA,sinC-sinB)$,且$\overrightarrow m$∥$\overrightarrow n$.
(1)求角A;       
(2)若b+c=4,△ABC的面积为$\frac{{3\sqrt{3}}}{4}$,求边a的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.△ABC中,AB=3,AC=4,∠BAC=60°,求BC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在单调递增的等比数列{an}中,${a_{{1_{\;}}}}+{a_4}=5,{a_2}•{a_3}$=6,则$\frac{a_4}{a_1}$=(  )
A.$\frac{2}{3}$B.$\frac{3}{2}$C.-$\frac{2}{3}$D.-$\frac{3}{2}$

查看答案和解析>>

同步练习册答案