精英家教网 > 高中数学 > 题目详情
9.焦点为F1(-2,0),F2(2,0),长轴长为10的椭圆的标准方程为(  )
A.$\frac{x^2}{100}+\frac{y^2}{96}=1$B.$\frac{x^2}{25}+\frac{y^2}{21}=1$C.$\frac{x^2}{96}+\frac{y^2}{100}=1$D.$\frac{x^2}{21}+\frac{y^2}{25}=1$

分析 利用已知条件求解a,b,判断椭圆的形状,求解椭圆方程即可.

解答 解:焦点为F1(-2,0),F2(2,0),长轴长为10,
可知焦点在x轴,a=5,c=2,则b=$\sqrt{{a}^{2}-{c}^{2}}$=$\sqrt{21}$.
所求的椭圆方程为:$\frac{x^2}{25}+\frac{y^2}{21}=1$.
故选:B.

点评 本题考查椭圆的简单性质,椭圆方程的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.某市电视台为了宣传,举办问答活动,随机对该市15至65岁的人群进行抽样,频率分布直方图及回答问题统计结果如表所示:
组号分组回答正确
的人数
回答正确的人数
占本组的概率
第1组[15,25)50.5
第2组[25,35)a0.9
第3组[35,45)27x
第4组[45,55)b0.36
第5组[55,65)3y
(1)分别求出a,b,x,y的值;
(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组应各抽取多少人?
(3)在(2)的前提下,电视台决定在所抽取的6人中随机抽取3人颁发幸运奖,求:所抽取的人中第3组至少有1人获得幸运奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知抛物线x2=2py(p>0)的焦点F是椭圆$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1({a>b>0})$的一个焦点,若P,Q是椭圆与抛物线的公共点,且直线PQ经过焦点F,则该椭圆的离心率为$\sqrt{2}-1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在正方体ABCD-A1B1C1D1中,CD的中点为M,AA1的中点为N,则异面直线C1M与BN所成角为(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.定义点P(x0,y0)到直线l:Ax+By+C=0(A2+B2≠0)的有向距离为d=$\frac{{A{x_0}+B{y_0}+C}}{{\sqrt{{A^2}+{B^2}}}}$.已知点P1,P2到直线l的有向距离分别是d1,d2,给出以下命题:
①若d1=d2,则直线P1P2与直线l平行;
②若d1=-d2,则直线P1P2与直线l垂直;
③若d1•d2>0,则直线P1P2与直线l平行或相交;
④若d1•d2<0,则直线P1P2与直线l相交,
其中所有正确命题的序号是③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.长方体ABCD-A1B1C1D1中,AB=AD=2,AA1=2$\sqrt{2}$,则长方体ABCD-A1B1C1D1的外接球的表面积为(  )
A.36πB.28πC.16πD.12π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某校收集该校学生从家到学校的时间后,制作成如下的频率分布直方图:
(1)求a的值及该校学生从家到校的平均时间;
(2)若该校因学生寝室不足,只能容纳全校50%的学生住校,出于安全角度考虑,从家到校时间较长的学生才住校,请问从家到校时间多少分钟以上开始住校.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=aln(x2+1)+bx存在两个极值点x1,x2
(1)求证:|x1+x2|>2;
(2)若实数λ满足等式f(x1)+f(x2)+a+λb=0,试求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.化简:$\frac{{2sin({π-α})+sin2α}}{{2{{cos}^2}\frac{α}{2}}}$=2sinα.

查看答案和解析>>

同步练习册答案