精英家教网 > 高中数学 > 题目详情
精英家教网如图,在直角梯形ABCD中,AB∥CD,∠ABC=90°,CD=BC=1,AB=2,E为AB的中点,将△ADE沿DE翻折至△A′DE,使二面角A′-DE-B为直二面角.
(1)若F、G分别为A′D、EB的中点,求证:FG∥平面A′BC;
(2)求二面角D-A′B-C度数的余弦值
分析:(1)F、G分别为A′D、EB的中点,要证FG∥平面A′BC,只需证明直线FG平行平面A′BC内的直线BP即可;
(2)要求二面角D-A′B-C度数的余弦值,只需求D-A′B-E的正弦值即可.
解答:精英家教网证明:(1)取A′C的中点P,连接PF,BP;
因为F、G分别为A′D、EB的中点,PF∥CD,
且是CD的一半,BG∥CD,也是CD的一半,
所以四边形FPBG是平行四边形,所以PB∥FG,PB?平面A′BC,
则FG∥平面A′BC;

(2)将△ADE沿DE翻折至△A′DE,使二面角A′-DE-B为直二面角.
精英家教网所以BC⊥平面A′BE,所以二面角D-A′B-C和D-A′B-E的和是90°
过E作ES⊥A′B于S连接SD,则∠DSE为二面角D-A′B-E的平面角,
所以ES=
2
2
,SD=
1+(
2
2
)
2
=
6
2

sin∠DSE=
1
6
2
=
6
3

二面角D-A′B-C和D-A′B-E的和是90°
所以二面角D-A′B-C度数的余弦值为
6
3
点评:本题考查直线与平面平行的判定,额面积的求法,考查空间想象能力 逻辑思维能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,SD=
2
a.
(Ⅰ)求证:平面SAB⊥平面SAD;
(Ⅱ)设SB的中点为M,且DM⊥MC,试求出四棱锥S-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2.点E、F分别是PC、BD的中点,现将△PDC沿CD折起,使PD⊥平面ABCD,
(1)求证:EF∥平面PAD;
(2)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCD中,AB∥CD,AD=CD=1,AB=3,动点P在BCD内运动(含边界),设
AP
AD
AB
,则α+β的最大值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCD中,已知BC∥AD,AB⊥AD,AB=4,BC=2,AD=4,若P为CD的中点,则
PA
PB
的值为
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AD=1,AB=2,CD=3,E、F分别为线段CD、AB上的点,且EF∥AD.将梯形沿EF折起,使得平面ADEF⊥平面BCEF,折后BD与平面ADEF所成角正切值为
2
2

(Ⅰ)求证:BC⊥平面BDE;
(Ⅱ)求平面BCEF与平面ABD所成二面角(锐角)的大小.

查看答案和解析>>

同步练习册答案