精英家教网 > 高中数学 > 题目详情
已知首项不为零的数列{an}的前n项和为Sn,若对任意的r,t∈N*,都有
Sr
St
=( 
r
t
 )2

(Ⅰ)判断数列{an}是否为等差数列,并证明你的结论;
(Ⅱ)若数列{bn}的第n项bn是数列{an}的第bn-1项(n≥2,n∈N*),且a1=1,b1=3,求数列{bn}的前n项和Tn
分析:(I)因为已知前n项和可求得通项用通项公式法判断;
(II)由(I)知an=2n-1,则根据题意得出bn与bn-1间的关系,构造等比数列bn-1,求得bn进而求得Tn
解答:解:(Ⅰ)令t=1,r=n,得
Sn
S1
=n2
,于是Sn=n2a1
当n≥2时,an=Sn-Sn-1=(2n-1)a1
当n=1时,S1=a1也适合上式.
综上知,an=(2n-1)a1
所以an-an-1=2a1
故数列{an}是公差d=2a1的等差数列.
(Ⅱ)当a1=1时,由(Ⅰ)知,an=2n-1.
于是bn=2bn-1-1,即bn-1=2(bn-1-1).
因此数列{bn-1}是首项为b1-1=2,公比为2的等比数列,所以bn-1=2×2n-1=2n.即bn=2n+1.
Tn=b1+b1++bn=( 21+22++2n )+n=
2 ( 1-2n )
1-2
+n=2n+1+n-2
点评:本题主要考查an与Sn的关系,等差数列,等比数列等基础知识,同时考查分析问题和解决问题的能力
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年新建二中六模) 已知首项不为零的数列

   (I)判断是否为等差数列,并证明你的结论.

   (II)若

   (III)求和

查看答案和解析>>

科目:高中数学 来源:2010年浙江省慈溪中学高一下学期期中考试数学(1-4班) 题型:解答题

已知首项不为零的数列的前n项和为,若对任意的r、s,都有.
(1)判断是否为等差数列,并证明你的结论;
(2)若,数列的第n项是数列的第,求;
(3)求和.

查看答案和解析>>

科目:高中数学 来源:湖南省高考适应性测试数学(文) 题型:解答题

(本小题满分13分)

已知首项不为零的数列的前项和为,若对任意的,都有

(Ⅰ)判断数列是否为等差数列,并证明你的结论;

(Ⅱ)若数列的第是数列的第,且,求数列的前项和

 

查看答案和解析>>

科目:高中数学 来源:2010年浙江省高一下学期期中考试数学(1-4班) 题型:解答题

已知首项不为零的数列的前n项和为,若对任意的r、s,都有.

 (1)判断是否为等差数列,并证明你的结论;

 (2)若,数列的第n项是数列的第,求;

 (3)求和.

 

查看答案和解析>>

同步练习册答案