精英家教网 > 高中数学 > 题目详情

已知数列为等差数列,且
(1)求数列的通项公式;
(2)求证:.

(1) ;(2)参考解析

解析试题分析:(1)因为数列为等差数列,且,通过这些条件列出相应的方程即可求出等差数列的首项和公差,从而求出数列的通项公式,即可求出数列的通项公式,本小题的关键是对一个较复杂的数列的理解,对数式的运算也是易错点.
(2) 因为由(1)的到数列的通项公式,根据题意需要求数列前n项和公式,所以通过计算可求出通项公式,再利用等比数列的求和公式,即可得到结论.
试题解析:(1)设等差数列的公差为d,
所以d=1;
所以
(2)证明:
所以 .
考点:1.对数的运算.2.等差数列的性质.3.等比数列的性质.4.构造转化的思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

正实数数列{an}中,a1=1,a2=5,且{}成等差数列.
(1)证明:数列{an}中有无穷多项为无理数;
(2)当n为何值时,an为整数?并求出使an<200的所有整数项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

正项数列{an}满足-(2n-1)an-2n=0.
(1)求数列{an}的通项公式an;
(2)令bn=,求数列{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.
(1)求{an},{bn}的通项公式.
(2)求数列{}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列{an}的前n项和Sn满足S3=0,S5=-5.
(1)求{an}的通项公式;
(2)求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列{an}满足a1=1,an+1=(n2+n-λ)an(n=1,2,…),λ是常数.
(1)当a2=-1时,求λ及a3的值.
(2)数列{an}是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的公差大于0,且是方程的两根,数列的前n项的和为,且.
(1)求数列的通项公式;
(2)记,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}是首项为,公比为的等比数列,设bn+15log3ant,常数t∈N*.
(1)求证:{bn}为等差数列;
(2)设数列{cn}满足cnanbn,是否存在正整数k,使ckck+1ck+2按某种次序排列后成等比数列?若存在,求kt的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列为等差数列,且
(1)求数列的通项公式;
(2)证明.

查看答案和解析>>

同步练习册答案