分析 $(\overrightarrow{e_1}-2\overrightarrow{e_2})∥(λ\overrightarrow{e_1}+4\overrightarrow{e_2})$,则存在实数k使得$\overrightarrow{{e}_{1}}-2\overrightarrow{{e}_{2}}$=k$(λ\overrightarrow{{e}_{1}}+4\overrightarrow{{e}_{2}})$,化简利用向量相等即可得出.
解答 解:∵$(\overrightarrow{e_1}-2\overrightarrow{e_2})∥(λ\overrightarrow{e_1}+4\overrightarrow{e_2})$,则存在实数k使得$\overrightarrow{{e}_{1}}-2\overrightarrow{{e}_{2}}$=k$(λ\overrightarrow{{e}_{1}}+4\overrightarrow{{e}_{2}})$,
∴(1-kλ)$\overrightarrow{{e}_{1}}$-(2+4k)$\overrightarrow{{e}_{2}}$=$\overrightarrow{0}$,
∵向量$\overrightarrow{e_1}$,$\overrightarrow{e_2}$不共线,
∴1-kλ=0,-(2+4k)=0,解得λ=-2.
故答案为:-2.
点评 本题考查了向量共线定理、向量相等、共面向量基本定理,考查了推理能力与计算能力,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 向左移动$\frac{1}{2}$个单位 | B. | 向右移动$\frac{1}{2}$个单位 | ||
C. | 向左移动1个单位 | D. | 向右移动1个单位 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 直角三角形 | B. | 钝角三角形 | C. | 等边三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com