精英家教网 > 高中数学 > 题目详情
18.如图所示,y=f(x)是可导函数,直线l:y=kx+3是曲线y=f(x)在x=1处的切线,令h(x)=xf(x),h′(x)是h(x)的导函数,则h′(1)的值是(  )
A.2B.1C.-1D.$\frac{1}{2}$

分析 根据导数的几何意义求出切线斜率,利用导数的运算法则进行求解即可得到结论.

解答 解:由图象可知直线的切线经过点(1,2),则k+3=2,得k=-1,
即f′(1)=-1,且f(1)=2,
∵h(x)=xf(x),
∴h′(x)=f(x)+xf′(x),
则h′(1)=f(1)+f′(1)=2-1=1,
故选:B.

点评 本题主要考查导数的计算利用导数的几何意义和导数的运算法则是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.一元二次方程x2-2ix-5=0的根的情况是(  )
A.有两个不等的实根B.有一个实根和一个虚根
C.有一对共轭的虚根D.有两个不共轭的虚根

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知定义在R上的函数g(x)=2x+2-x+|x|,则满足g(2x-1)<g(3)的x的取值范围是(-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某程序框图如图所示,执行该程序,若输入的a值为1,则输出的a值为(  )
A.1B.2C.3D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=ax3-sinbx+2015(x∈R),若$f(\frac{π}{4})=1$,则$f(-\frac{π}{4})$=4029.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.m∈R,函数f(x)=mx-lnx+1.
(1)讨论函数f(x)的单调区间和极值;
(2)将函数f(x)的图象向下平移1个单位后得到g(x)的图象,且x1=$\sqrt{e}$(e为自然对数的底数)和x2是函数g(x)的两个不同的零点,求m的值并证明:x2>e$\sqrt{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若两条直线ax+2y+6=0与x+(a-1)y+(a2-1)=0平行,则a的取值集合是(  )
A.{-1,2}B.{-1}C.{2}D.$\left\{{\frac{2}{3}}\right\}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知向量$\overrightarrow p=(2,-3)$,$\overrightarrow q=(x,6)$,且$\overrightarrow p$∥$\overrightarrow q$,则$|{\overrightarrow p+\overrightarrow q}|$的值为$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}与{bn}满足an+1-an=q(bn+1-bn),n∈N*
(1)若bn=2n-3,a1=1,q=2,求数列{an}的通项公式;
(2)若a1=1,b1=2,且数列{bn}为公比不为1的等比数列,求q的值,使数列{an}也是等比数列;
(3)若a1=q,bn=qn(n∈N*),且q∈(-1,0),数列{an}有最大值M与最小值m,求$\frac{M}{m}$的取值范围.

查看答案和解析>>

同步练习册答案