精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,侧棱底面,底面是直角梯形,,且是棱的中点 .

(Ⅰ)求证:∥平面

(Ⅱ)求平面与平面所成锐二面角的余弦值;

(Ⅲ)设点是线段上的动点,与平面所成的角为,求的最大值.

【答案】(1)见解析 ; (2) ;(3).

【解析】

(Ⅰ)通过建立空间直角坐标系,利用平面SCD的法向量即可证明AM∥平面SCD;
(Ⅱ)分别求出平面SCD与平面SAB的法向量,利用法向量的夹角即可得出;
(Ⅲ)利用线面角的夹角公式即可得出表达式,进而利用二次函数的单调性即可得出.

(Ⅰ)以点为坐标原点,建立如图所示的空间直角坐标系,

设平面的一个法向量为

,令,得 ,∴ ,即

平面∥平面

(Ⅱ)取平面SAB的一个法向量 ,则

∴平面与平面所成的锐二面角的余弦值为

(Ⅲ)设,则,平面的一个法向量为

,即时,取得最大值,且

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】①某学校高二年级共有526人,为了调查学生每天用于休息的时间,决定抽取10%的学生进行调查;②运动会的工作人员为参加接力赛的6支队伍安排跑道;③一次数学月考中,某班有10人的成绩在100分以上,32人的成绩在90100分,12人的成绩低于90分,现从中抽取9人有解有关情况.针对这三个事件,恰当的抽样方法分别为(

A.分层抽样、分层抽样、简单随机抽样B.系统抽样、简单随机抽样、分层抽样

C.简单随机抽样、简单随机抽样、分层抽样D.系统抽样、分层抽样、简单随机抽样

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校有四件作品参加航模类作品比赛.已知这四件作品中恰有两件获奖.在结果揭晓前,甲、乙、丙、丁四位同学对这四件参赛作品的获奖情况预测如下:

甲说:“同时获奖”;

乙说:“不可能同时获奖”;

丙说:“获奖”;

丁说:“至少一件获奖”.

如果以上四位同学中有且只有二位同学的预测是正确的,则获奖的作品是( )

A. 作品与作品 B. 作品与作品 C. 作品与作品 D. 作品与作品

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“节能减排,绿色生态”为当今世界各国所倡导,某公司在科研部门的鼎力支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该公 司每月的处理量(吨)至少为50吨,至多为220吨.月处理成本(元)与月处理量(吨)之间的函数关系式近似表示为:,且每处理一吨二氧化碳得到可利用的化工产品价值为120元.

(1)该公司每月处理量为多少吨时,才能使每吨的平均处理成本最低?

(2)每月处理量为多少吨时,月获利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数

(1)讨论函数的单凋性;

(2)若存在使得对任意的不等式(其中e为自然对数的底数)都成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,且

1)求证:

2)在线段上,是否存在一点,使得二面角的大小为45°,如果存在,求与平面所成角的正弦值,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.

(1)若a=-2,求B∩A,B∩(UA);(2)A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的一段图像如图所示.

(1)求此函数的解析式;

(2)求此函数在上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知多面体的底面是边长为的菱形, 底面 ,且

1证明:平面平面

2若直线与平面所成的角为求二面角

的余弦值.

查看答案和解析>>

同步练习册答案