精英家教网 > 高中数学 > 题目详情
已知点P(x,y)满足
x-1≤0
2x+3y-5≤0
4x+3y-1≥0
,点Q(x,y)在圆(x+2)2+(y+2)2=1上,则|PQ|的最大值与最小值之差为
 
考点:简单线性规划
专题:数形结合
分析:由约束条件作出可行域,作出圆,数形结合得到使|PQ|取得最大值与最小值点,由点到直线的距离公式和两点间的距离公式得答案.
解答: 解:由约束条件
x-1
2x+3y-5≤0
4x+3y-1≥0
作出可行域如图,

圆x+2)2+(y+2)2=1的圆心坐标为(-2,-2),半径为1,
联立
2x+3y-5=0
4x+3y-1=0
,解得:C(-2,3).
由图可知,|PQ|的最大值为圆心到C的距离加圆的半径,
等于
(3+2)2+(-2+2)2
+1=6

最小值为圆心到直线4x+3y-1=0的距离减圆的半径,
等于
|4×(-2)+3×(-2)-1|
42+32
-1=2

∴|PQ|的最大值与最小值之差为6-2=4.
故答案为:4.
点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

解方程:log2(2-x-1)•log 
1
2
(2-x+1-2)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+(a+1)x2+ax-2,曲线y=f(x)在点(1,f(1))处的切线在x轴上的截距为
7
11

(Ⅰ)求实数a的值;
(Ⅱ)证明:当k<1时,曲线y=f(x)与y=(k-1)ex+2x-2有唯一公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lg(1+x)-lg(1-x),判断并证明f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={a1,a2,a3,a4,a5},B={a12,a22,a32,a42,a52},其中,ai∈Z,1≤i≤5,且满足a1<a2<a3<a4<a5,a1+a4=10,A∩B={a1,a4},A∪B中所有元素之和为256,求集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:

面面垂直的向量方法:证明这两个平面的法向量是
 

面面垂直的判定定理:文字语言:
 
,符号语言:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)证明线面平行的向量方法:证明直线的
 
 与平面的法向量
 

(2)直线与平面平行的判定定理:文字语言:
 
符号语言:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

面面平行的向量方法:证明这两个平面
 
的是
 

面面平行的判定定理:文字语言:
 
,符号语言:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x2-2(a+1)x+3在区间(-∞,3]上是增函数,则a的取值范围是
 

查看答案和解析>>

同步练习册答案