精英家教网 > 高中数学 > 题目详情
已知函数图像上点处的切线与直线平行(其中),     
(I)求函数的解析式;
(II)求函数上的最小值;
(III)对一切恒成立,求实数的取值范围。
(I) (II) .
(III)实数的取值范围为.

试题分析:(I)由点处的切线方程与直线平行,得该切线斜率为2,即
所以 4分
(II)由(I)知,显然所以函数上单调递减.当,所以函数上单调递增,

时,函数上单调递增,
因此        7分
所以  10分
(III)对一切恒成立,又


单调递增,
单调递减,
单调递增,

所以
因为对一切恒成立,

故实数的取值范围为  14分 
点评:难题,本题(1)较为简单,主要利用“曲线切线的斜率,等于在切点的导函数值”。本题(2)主要利用“在给定区间,导函数值非负,函数为增函数;导函数值非正,函数为减函数”,研究函数的单调区间。(3)作为不等式恒成立问题,通过构造函数,研究函数的单调性、极值(最值),使问题得到解决。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数,其中
(Ⅰ)若,求曲线在点处的切线方程;
(Ⅱ)求在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数则下列结论正确的是(      )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是函数的两个极值点.
(1)若,求函数的解析式;
(2)若,求实数的最大值;
(3)设函数,若,且,求函数内的最小值.(用表示)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数 
(1) 当时,求函数的单调区间;
(2) 当时,求函数上的最小值和最大值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
⑴求函数的单调区间;
⑵记函数,当时,上有且只有一个极值点,求实数的取值范围;
⑶记函数,证明:存在一条过原点的直线的图象有两个切点

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=(x _ 1)ex _ kx2(k∈R).
(Ⅰ)当k=1时,求函数f(x)的单调区间;
(Ⅱ)当k∈(1/2,1]时,求函数f(x)在[0,k]上的最大值M.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

“函数”是“可导函数在点处取到极值”的  条件。 (    )
A.充分不必要B.必要不充分 C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数).
(1)当时,求证:上单调递增;
(2)当时,求证:.

查看答案和解析>>

同步练习册答案