精英家教网 > 高中数学 > 题目详情
已知椭圆的右准线l与x轴相交于点E,过椭圆右焦点F的直线与椭圆相交于A、B两点,点C在右准线l上,且BC∥x轴?求证直线AC经过线段EF的中点.
【答案】分析:欲证直线AC经过线段EF的中点,分两类讨论:①若AB垂直于x轴,②若AB不垂直于x轴,对于第一种特殊情况比较简单,直接验证即可;对于第二种情况,记A(x1,y1)和B(x2,y2),求出直线AN,CN的斜率看它们是不是相等,若相等,则可得A、C、N三点共线.即可证得直线AC经过线段EF的中点N.
解答:证明:依设,得椭圆的半焦距c=1,右焦点为F(1,0),
右准线方程为x=2,点E的坐标为(2,0),
EF的中点为N(,0)(3分)
若AB垂直于x轴,
则A(1,y1),B(1,-y1),C(2,-y1),
∴AC中点为N(,0),
即AC过EF中点N.
若AB不垂直于x轴,由直线AB过点F,
且由BC∥x轴知点B不在x轴上,
故直线AB的方程为y=k(x-1),k≠0.
记A(x1,y1)和B(x2,y2),
则C(2,y2)且x1
x2满足二次方程
即(1+2k2)x2-4k2x+2(k2-1)=0,
∴x1+x2=(10分)
又x21=2-2y21<2,得x1-≠0,
故直线AN,CN的斜率分别为
k1=
∴k1-k2=2k•
∵(x1-1)-(x2-1)(2x1-3)=3(x1+x2)-2x1x2-4
=
∴k1-k2=0,即k1=k2,故A、C、N三点共线.
所以,直线AC经过线段EF的中点N.(14分)
点评:直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等,突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,且过点P(2,
2
)
,设椭圆的右准线l与x轴的交点为A,椭圆的上顶点为B,直线AB被以原点为圆心的圆O所截得的弦长为
4
5
5

(1)求椭圆E的方程及圆O的方程;
(2)若M是准线l上纵坐标为t的点,求证:存在一个异于M的点Q,对于圆O上任意一点N,有
MN
NQ
为定值;且当M在直线l上运动时,点Q在一个定圆上.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的右焦点F与抛物线y2=4x的焦点重合,短轴长为2.椭圆的右准线l与x轴交于E,过右焦点F的直线与椭圆相交于A、B两点,点C在右准线l上,BC∥x轴.
(1)求椭圆的标准方程,并指出其离心率;
(2)求证:线段EF被直线AC平分.

查看答案和解析>>

科目:高中数学 来源:2011年湖南省高三第一次学情摸底考试数学卷 题型:解答题

(本题满分13 分)

    已知椭圆的右焦点F 与抛物线y2 = 4x 的焦点重合,短轴长为2.椭圆的右准线l与x轴交于E,过右焦点F 的直线与椭圆相交于A、B 两点,点C 在右准线l 上,BC//x 轴.

   (1)求椭圆的标准方程,并指出其离心率;

   (2)求证:线段EF被直线AC 平分.

 

查看答案和解析>>

科目:高中数学 来源:广东省高考真题 题型:证明题

已知椭圆的右准线l与x轴相交于点E,过椭圆右焦点F的直线与椭圆相交于A、B两点,点C在右准线l上,且BC∥x轴,求证直线AC经过线段EF的中点。

查看答案和解析>>

同步练习册答案