A. | -2a | B. | 2a | C. | a | D. | -a |
分析 根据题意,由导数的定义可得$\underset{lim}{n→∞}\frac{f({x}_{0}+△x)-f({x}_{0})}{△x}$=a,进而分析可得$\underset{lim}{n→∞}$$\frac{f({x}_{0}+△x)-f({x}_{0}-3△x)}{2△x}$=2$\underset{lim}{n→∞}$$\frac{f({x}_{0}+△x)-f({x}_{0}-3△x)}{4△x}$,即可得答案.
解答 解:根据题意,若f'(x0)=a,则$\underset{lim}{n→∞}\frac{f({x}_{0}+△x)-f({x}_{0})}{△x}$=a,
而$\underset{lim}{n→∞}$$\frac{f({x}_{0}+△x)-f({x}_{0}-3△x)}{2△x}$=2$\underset{lim}{n→∞}$$\frac{f({x}_{0}+△x)-f({x}_{0}-3△x)}{4△x}$=2a;
故选:B.
点评 本题主要考查函数在x0处的极限的定义,解题的关键是对式子$\underset{lim}{n→∞}$$\frac{f({x}_{0}+△x)-f({x}_{0}-3△x)}{2△x}$的变形.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,2) | B. | (0,3] | C. | (2,3] | D. | (2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{13}{36}$ | B. | $\frac{59}{36}$ | C. | $\frac{59}{72}$ | D. | $\frac{5}{18}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com