精英家教网 > 高中数学 > 题目详情
6.已知对k∈R,直线y-kx-1=0与椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{m}$=1恒有公共点,则实数m的取值范围(  )
A.(1,4]B.[1,4)C.[1,4)∪(4,+∞)D.(4,+∞)

分析 方法一:由直线恒过点(0,1),当点(0,1)在椭圆内部时,直线与椭圆恒有公共点,求得m的取值范围,且m≠4,即可求得m的取值范围;
方法二:将直线方程代入椭圆方程,由△≥0,且m≠4,即可求得m的取值范围.

解答 解:方法一:直线y-kx-1=0恒过点(0,1),仅当点(0,1)在椭圆上或椭圆内时,此直线才恒与椭圆有公共点,
而点(0,1)在y轴上,则$\frac{1}{m}$≤1且m>0,得m≥1,
而根据椭圆的方程中有m≠4,
故m的范围是[1,4)∪(4,+∞),
故选C.
方法二:联立$\left\{\begin{array}{l}{y=kx+1}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{m}=1}\end{array}\right.$化为(m+4k2)x2+8kx+4-4m=0,
∵直线y-kx-1=0与椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{m}$=1恒有公共点,
∴△=64k2-4(m+4k2)(4-4m)≥0,
化为m2+(4k2-1)m≥0,
由于m≠0,上式化为:m≥1-4k2
由于上式对k∈R恒成立,∴m≥1.
由椭圆的定义可知:m≠4.
综上可得m的取值范围是:[1,4)∪(4,+∞).
故选C.

点评 本题考查直线与椭圆的位置关系,直线与椭圆的交点问题,考查判别式法应用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.在△ABC中,若$4πsinA-3arccos(-\frac{1}{2})=0$,则A=$\frac{π}{6}$或$\frac{5π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如表:
年份20112012201320142015
时间代号t12345
储蓄存款y(千亿元)567810
(1)求y关于t的线性回归方程;
(2)用所求回归方程预测该地区2016年的人民币储蓄存款.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.(文)函数f(x)=x3-3x2-9x+a在[0,4]上的最大值3,则a=(  )
A.30B.-11C.3D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)和圆O:x2+y2=b2,已知椭圆C的离心率为$\frac{{2\sqrt{2}}}{3}$,直线$\sqrt{2}$x-2y-$\sqrt{6}$=0与圆O相切.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)椭圆C的上顶点为B,EF是圆O的一条直径,EF不与坐标轴重合,直线BE、BF与椭圆C的另一个交点分别为P、Q,求△BPQ的面积的最大值及此时PQ所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设过曲线f(x)=-ex-x+3a上任意一点处的切线为l1,总存在过曲线g(x)=(x-1)a+2cosx上一点处的切线l2,使得l1⊥l2,则实数a的取值范围为(  )
A.[-1,1]B.[-2,2]C.[-2,1]D.[-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在公差不为零的等差数列{an}中,2a5-a72+2a9=0,数列{bn}是等比数列,且b7=a7,则log2(b5b9)=(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.要得到函数y=2sin(2x+$\frac{π}{5}$)的图象,应该把函数y=cos(x-$\frac{2}{15}$π)-$\sqrt{3}$sin(x-$\frac{2π}{15}$)的图象做如下变换(  )
A.将图象上的每一点横坐标缩短到原来的$\frac{1}{2}$而纵坐标不变
B.沿x向左平移$\frac{π}{2}$个单位,再把得图象上的每一点横坐标伸长到原来的2而纵坐标不变
C.先把图象上的每一点横坐标缩短到原来的$\frac{1}{2}$而纵坐标不变,再将所得图象沿x向右平移$\frac{π}{4}$个单位
D.先把图象上的每一点横坐标缩短到原来的$\frac{1}{2}$而纵坐标不变,再将所得图象沿x向左平移$\frac{π}{2}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.过(3,2)点的直线与坐标轴的正半轴交于A,B两点,△AOB面积的最小值12.

查看答案和解析>>

同步练习册答案