【题目】某花圃为提高某品种花苗质量,开展技术创新活动,在,实验地分别用甲、乙方法培训该品种花苗.为观测其生长情况,分别在实验地随机抽取各50株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图.记综合评分为80及以上的花苗为优质花苗.
(1)求图中的值;
(2)填写下面的列联表,并判断是否有90%的把握认为优质花苗与培育方法有关.
优质花苗 | 非优质花苗 | 合计 | |
甲培育法 | 20 | ||
乙培育法 | 10 | ||
合计 |
附:下面的临界值表仅供参考.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:,其中.)
科目:高中数学 来源: 题型:
【题目】下列关于充分必要条件的判断中,错误的是( )
A.“”是“”的充分条件
B.“”是“”的必要条件
C.“”是“”的充要条件
D.“,”是“”的非充分非必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线的焦点为,经过轴正半轴上点的直线交于不同的两点和.
(1)若,求点的坐标;
(2)若,求证:原点总在以线段为直径的圆的内部;
(3)若,且直线∥,与有且只有一个公共点,问:△的面积是否存在最小值?若存在,求出最小值,并求出点的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某省普通高中学业水平考试成绩按人数所占比例依次由高到低分为,,,,五个等级,等级,等级,等级,,等级共.其中等级为不合格,原则上比例不超过.该省某校高二年级学生都参加学业水平考试,先从中随机抽取了部分学生的考试成绩进行统计,统计结果如图所示.若该校高二年级共有1000名学生,则估计该年级拿到级及以上级别的学生人数有( )
A.45人B.660人C.880人D.900人
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(为自然对数的底数).
(1)求函数的极值;
(2)问:是否存在实数,使得有两个相异零点?若存在,求出的取值范围;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com