【题目】证明:△ABC是等边三角形的充要条件是a2+b2+c2=ab+bc+ac(其中a,b,c是△ABC的三条边).
科目:高中数学 来源: 题型:
【题目】已知圆: (其中为圆心)上的每一点横坐标不变,纵坐标变为原来的一半,得到曲线.
(1)求曲线的方程;
(2)若点为曲线上一点,过点作曲线的切线交圆于不同的两点(其中在的右侧),已知点.求四边形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设, 分别为双曲线的左、右焦点, 为双曲线的左顶点,以, 为直径的圆交双曲线某条渐近线于, 两点,且满足,则该双曲线的离心率为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,设内角A、B、C的对边分别为a、b、c,向量 =(cosA+ ,sinA),向量 =(﹣sinA,cosA),若| + |=2.
(1)求角A的大小;
(2)若b=4 ,且c= a,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(1)若且函数的值域为,求的表达式;
(2)在(1)的条件下, 当时, 是单调函数, 求实数k的取值范围;
(3)设, 且为偶函数, 判断+能否大于零?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合P={(x,y)||x|+|y|≤1,x∈R,y∈R},Q={(x,y)|x2+y2≤1,x∈R,y∈R},R={(x,y)|x4+y2≤1,x∈R,y∈R}则下列判断正确的是( )
A.PQR
B.PRQ
C.QPR
D.RPQ
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知直线与双曲线交于A,B两点,且点A的横坐标为4.
(1)求的值及B点坐标;
(2)结合图形,直接写出一次函数的函数值大于反比例函数的函数值时x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an},an≥0,a1=0,an+12+an+1﹣1=an2(n∈N).记Sn=a1+a2+…+an . Tn= + +…+ .求证:当n∈N*时
(1)0≤an<an+1<1;
(2)Sn>n﹣2;
(3)Tn<3.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com