精英家教网 > 高中数学 > 题目详情

如图,在长方体ABCD-A1B1C1D1中,AB=2,AD=1,A1A=1,证明直线BC1平行于平面DA1C,并求直线BC1到平面D1AC的距离.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,平面平面

(Ⅰ)求证:平面平面
(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱的侧棱与底面垂直,底面是等腰直角三角形,,侧棱分别是的中点,点在平面上的射影是的垂心

(1)求证:
(2)求与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,在等腰梯形CDEF中,CB、DA是梯形的高,,现将梯形沿CB、DA折起,使,得一简单组合体如图2示,已知分别为的中点.
   
图1                              图2
(1)求证:平面
(2)求证:
(3)当多长时,平面与平面所成的锐二面角为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直棱柱ABC-中,D,E分别是AB,BB1的中点,=AC=CB=AB.

(Ⅰ)证明: //平面
(Ⅱ)求二面角D--E的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,在等腰直角三角形中,,,分别是上的点,,
的中点.将沿折起,得到如图2所示的四棱锥,其中.

(Ⅰ) 证明:平面
(Ⅱ) 求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,

(I)求证
(II)设

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,ABCD是边长为2的正方形,ED⊥平面ABCD, ED="1," EF//BD且2EF=BD.

(1)求证:平面EAC⊥平面BDEF;
(2)求几何体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是正方形,侧面底面,若分别为的中点.

(Ⅰ) 求证://平面
(Ⅱ) 求证:平面平面

查看答案和解析>>

同步练习册答案