精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=1﹣ (a>0且a≠1)是定义在R上的奇函数.
(1)求a的值;
(2)求f(x)的值域;
(3)若关于x的方程|f(x)(2x+1)|=m有1个实根,求实数m的取值范围;
(4)当x∈(0,1]时,tf(x)≥2x﹣2恒成立,求实数t取值范围.

【答案】
(1)解:∵函数f(x)=1﹣ (a>0且a≠1)是定义在R上的奇函数,

∴f(﹣x)=﹣f(x),解得:a=2


(2)解:

∴y∈(﹣1,1)


(3)解:设h(x)=|2x﹣1|,g(x)=m,

作图,如图示:

如图当m≥1时,h(x)=|2x﹣1|与g(x)=m有一个交点,

所以|f(x)(2x+1)|=m有一个实根,

所以m∈[1,+∞)∪{0}


(4)解: (2x2﹣(t+1)2x+t﹣2≤0,

令2x=u,x∈(0,1]u∈(1,2],

u∈(1,2]时,u2﹣(t+1)u+t﹣2≤0恒成立,


【解析】(1)根据函数的奇偶性得到f(﹣x)=﹣f(x),求出a的值即可;(2)将f(x)变形,解关于y的不等式,求出f(x)的值域即可;(3)结合图象求出m的范围即可;(4)令2x=u,x∈(0,1]u∈(1,2],得到u∈(1,2]时,u2﹣(t+1)u+t﹣2≤0恒成立,求出t的范围即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求的单调区间;

2)若时,不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面是菱形的四棱锥中, 为线段上一点,且

(Ⅰ)若的中点,证明: 平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论①abc>0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0;
其中正确的结论是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=x2﹣ax﹣3(﹣5≤x≤5)
(1)若a=2,求函数的最值;
(2)若函数在定义域内是单调函数,求a取值的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知多面体如图所示,底面为矩形,其中平面 .若 分别是 的中点,其中

(Ⅰ)证明:

(Ⅱ)若二面角的余弦值为,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将圆为参数)上的每一点的横坐标保持不变,纵坐标变为原来的倍,得到曲线

(1)求出的普通方程;

(2)设直线 的交点为 ,以坐标原点为极点, 轴正半轴为极轴建立极坐标系,求过线段的中点且与垂直的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x|x|+bx+c(b,c∈R),给出如下四个命题:①若c=0,则f(x)为奇函数;②若b=0,则函数f(x)在R上是增函数;③函数y=f(x)的图象关于点(0,c)成中心对称图形;④关于x的方程f(x)=0最多有两个实根.其中正确的命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四名同学根据各自的样本数据研究变量之间的相关关系,并求得回归直线方程,分别得到以下四个结论:(  )

负相关且. ②负相关且

正相关且正相关且

其中正确的结论的序号是(

A. ①② B. ②③ C. ①④ D. ③④

查看答案和解析>>

同步练习册答案