精英家教网 > 高中数学 > 题目详情
1.在△ABC中,已知角A,B,C的对边分别为a,b,c.若a=2,A=30°,C=45°,则△ABC的面积为(  )
A.$\sqrt{2}$B.$\sqrt{3}$+1C.$\frac{1}{2}$($\sqrt{3}$+1)D.2$\sqrt{2}$

分析 由已知利用正弦定理可求c的值,利用三角形内角和定理,两角和的正弦函数公式可求sinB,进而利用三角形面积公式即可计算得解.

解答 解:∵a=2,A=30°,C=45°,
∴c=$\frac{a•sinC}{sinA}$=$\frac{2×\frac{\sqrt{2}}{2}}{\frac{1}{2}}$=2$\sqrt{2}$,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}×2×2\sqrt{2}×$sin(180°-30°-45°)=1+$\sqrt{3}$.
故选:B.

点评 本题主要考查了正弦定理,三角形内角和定理,两角和的正弦函数公式,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知某帆船中心比赛场馆区的海面上每天海浪高度y(米)可看作是时间t(0≤t≤24,单位:小时)的函数,记作y=f(t),经长期观测,y=f(t)的曲线可近似地看成是函数y=Acosωt+b,下表是某日各时的浪高数据:
t/时03691215182124
y/米2$\frac{3}{2}$1$\frac{3}{2}$2$\frac{3}{2}$0.99$\frac{3}{2}$2
则最能近似地表示表中数据间对应关系的函数是(  )
A.y=$\frac{1}{2}$cos$\frac{π}{6}$t+1B.y=$\frac{1}{2}$cos$\frac{π}{6}$t+$\frac{3}{2}$C.y=2cos$\frac{π}{6}$t+$\frac{3}{2}$D.y=$\frac{1}{2}$cos6πt+$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知等比数列{an}的前n项和为Sn,${a_2}=-\frac{1}{2}$,且满足Sn,Sn+2,Sn+1成等差数列,则a3等于$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=Asin(ωx+ϕ),x∈R,其中$(A>0,ω>0,0<ϕ<\frac{π}{2})$的周期为π,且图象上一个最低点为$M(\frac{2π}{3},-2)$.
(1)求f(x)的解析式;
(2)当$x∈[0,\frac{π}{12}]$时,求f(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=(x+1)lnx-a(x-1)(a∈R)
(1)当a=0时,求f(x)的单调区间;
(2)若f(x)≥0对任意x∈[1,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数$y={a^{{x^2}-3x+2}}({a>1})$的单调增区间是[$\frac{3}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.变量x,y之间的一组相关数据如表所示:
x4567
y8.27.86.65.4
若x,y之间的线性回归方程为$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+12.28,则$\stackrel{∧}{b}$的值为(  )
A.-0.96B.-0.94C.-0.92D.-0.98

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\sqrt{{x}^{2}-2ax+3}$在(-1,1)上是单调递增的,则a的取值范围是(  )
A.[-2,-1]B.(-∞,-1]C.[1,2]D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知a,b,c分别为△ABC的三个内角A,B,C对应的边长,A=60°,B=45°,$b=\sqrt{6}$,则a=3.

查看答案和解析>>

同步练习册答案