精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.

(1)证明PA∥平面EDB;
(2)证明PB⊥平面EFD;
(3)求二面角C﹣PB﹣D的大小.

【答案】
(1)解:方法一:证明:连接AC,AC交BD于O,连接EO.

∵底面ABCD是正方形,∴点O是AC的中点

在△PAC中,EO是中位线,∴PA∥EO

而EO平面EDB且PA平面EDB,

所以,PA∥平面EDB

方法二:如图所示建立空间直角坐标系,D为坐标原点,设DC=a.

证明:连接AC,AC交BD于G,连接EG.

依题意得

∵底面ABCD是正方形,∴G是此正方形的中心,故点G的坐标为

,这表明PA∥EG.

而EG平面EDB且PA平面EDB,∴PA∥平面EDB


(2)解:方法一,证明:

∵PD⊥底面ABCD且DC底面ABCD,∴PD⊥DC

∵PD=DC,可知△PDC是等腰直角三角形,而DE是斜边PC的中线,

∴DE⊥PC.①

同样由PD⊥底面ABCD,得PD⊥BC.

∵底面ABCD是正方形,有DC⊥BC,∴BC⊥平面PDC.

而DE平面PDC,∴BC⊥DE.②

由①和②推得DE⊥平面PBC.

而PB平面PBC,∴DE⊥PB

又EF⊥PB且DE∩EF=E,所以PB⊥平面EFD

方法二:证明;依题意得B(a,a,0),

,故

∴PB⊥DE.

由已知EF⊥PB,且EF∩DE=E,所以PB⊥平面EFD


(3)解:方法一:由(2)知,PB⊥DF,故∠EFD是二面角C﹣PB﹣D的平面角.

由(2)知,DE⊥EF,PD⊥DB.

设正方形ABCD的边长为a,

在Rt△PDB中,

在Rt△EFD中, ,∴

所以,二面角C﹣PB﹣D的大小为

方法二:解:设点F的坐标为(x0,y0,z0), ,则(x0,y0,z0﹣a)=λ(a,a,﹣a).

从而x0=λa,y0=λa,z0=(1﹣λ)a.所以

由条件EF⊥PB知, ,即 ,解得

∴点F的坐标为 ,且

即PB⊥FD,故∠EFD是二面角C﹣PB﹣D的平面角.

,且

所以,二面角C﹣PB﹣D的大小为


【解析】法一:(1)连接AC,AC交BD于O,连接EO要证明PA∥平面EDB,只需证明直线PA平行平面EDB内的直线EO;(2)要证明PB⊥平面EFD,只需证明PB垂直平面EFD内的两条相交直线DE、EF,即可;(3)必须说明∠EFD是二面角C﹣PB﹣D的平面角,然后求二面角C﹣PB﹣D的大小.法二:如图所示建立空间直角坐标系,D为坐标原点,设DC=a.(1)连接AC,AC交BD于G,连接EG,求出 ,即可证明PA∥平面EDB;(2)证明EF⊥PB, ,即可证明PB⊥平面EFD;(3)求出 ,利用 ,求二面角C﹣PB﹣D的大小.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数
(1)判断函数f(x)的奇偶性;
(2)判断f(x)在[2,+∞)上的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年年底,某商业集团根据相关评分标准,对所属20家商业连锁店进行了年度考核评估,并依据考核评估得分(最低分60分,最高分100分)将这些连锁店分别评定为ABCD四个类型,其考核评估标准如下表:

评估得分

[60,70

[70,80

[80,90

[90,100]

评分类型

D

C

B

A

考核评估后,对各连锁店的评估分数进行统计分析,得其频率分布直方图如下:

Ⅰ)评分类型为A的商业连锁店有多少家;

Ⅱ)现从评分类型为AD的所有商业连锁店中随机抽取两家做分析,求这两家来自同一评分类型的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,从参加环保知识竞赛的学生中抽出40名,将其成绩(均为整数)整理后画出的频率分布直方图如下:

观察图形,回答下列问题:

(1)估计这次环保知识竞赛成绩的中位数;

(2)从成绩是80分以上(包括80分)的学生中选两人,求他们在同一分数段的概率?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有下列命题:
①乘积(a+b+c+d)(p+q+r)(m+n)展开式的项数是24;
②由1、2、3、4、5组成没有重复数字且1、2都不与5相邻的五位数的个数是36;
③某会议室第一排共有8个座位,现有3人就座,若要求每人左右均有空位,那么不同的坐法种数为24;
④已知(1+x)8=a0+a1x+…+a8x8 , 其中a0 , a1 , …,a8中奇数的个数为2.
其中真命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)若函数上为减函数,求实数的最小值;

2)若存在,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定两个长度为1的平面向量 ,它们的夹角为120°.如图所示,点C在以O为圆心的圆弧 上变动.若 ,其中x,y∈R,试求x+y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为预防H1N1病毒暴发,某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如表:

A组

B组

C组

疫苗有效

673

x

y

疫苗无效

77

90

z

已知在全体样本中随机抽取1个,抽到B组疫苗有效的概率是0.33.
(1)求x的值;
(2)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C组抽取多少个?
(3)已知y≥465,z≥25,求不能通过测试的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=Asin(ωx+φ)(ω>0,||< ,x∈R)的部分图象如图所示,则函数表达式为(
A.y=﹣4sin(
B.y=4sin(
C.y=﹣4sin(
D.y=4sin(

查看答案和解析>>

同步练习册答案