精英家教网 > 高中数学 > 题目详情

已知
(1)求函数的定义域;
(2)判断并证明函数的奇偶性;
(3)若,试比较的大小.

(1)(-1,1)(2)奇函数(3)当时, >
时,=
时,<

解析试题分析:解(1)函数的定义域为(-1,1).
(2)∵
是奇函数.
(3)设,则

,∴,即
∴函数在(-1,1)上是减函数.
由(2)知函数在(-1,1)上是奇函数,
=
∴当时,,则>,∴>
时,=
时,<
考点:对数函数
点评:函数的单调性对求最值、判断函数值大小关系和证明不等式都有较大帮助。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(I)当a=3时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(II)对任意b>0,f(x)在区间[b-lnb,+∞)上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)讨论单调区间;
(2)当时,证明:当时,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中为实数;
(1)当时,试讨论函数的零点的个数;
(2)已知不等式对任意都成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若曲线与曲线相交,且在交点处有相同的切线,求的值及该切线的方程;
(Ⅱ)设函数,当存在最小值时,求其最小值的解析式;
(Ⅲ)对(Ⅱ)中的,证明:当时, .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若,求的值;
(Ⅱ)若对于恒成立,求实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的递增区间是
① 求的值。
② 设,求在区间上的最大值和最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1) 求函数上的最小值;
(2) 对一切恒成立,求实数a的取值范围;
(3) 证明:对一切,都有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)是定义在R上的奇函数,并且当x∈(0,+∞)时,f(x)=2x.
(1)求f(log2)的值;
(2)求f(x)的解析式.

查看答案和解析>>

同步练习册答案