精英家教网 > 高中数学 > 题目详情

已知函数.
(1)若在区间单调递增,求的最小值;
(2)若,对,使成立,求的范围.

(1);(2).

解析试题分析:(1)在区间单调递增,则恒成立.
分离变量得:,所以a大于等于的最大值即可.
(2)对,使,则应有
下面就分别求出的最大值,然后解不等式即得a的范围.
试题解析:(1)由恒成立
得: 而单调递减,从而

                   6分
(2)对,使
单调递增
          8分
上单调递减,则
                12分
考点:导数的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数时取得极值.
(1)求a、b的值;(2)若对于任意的,都有成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(k为常数,e=2.71828……是自然对数的底数),曲线在点处的切线与x轴平行。
(1)求k的值;
(2)求的单调区间;
(3)设,其中的导函数,证明:对任意

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求处的切线方程;
(Ⅱ)求的单调区间;
(Ⅲ)若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)若曲线在它们的交点处有相同的切线,求实数的值;
(2)当时,若函数在区间内恰有两个零点,求实数的取值范围;
(3)当时,求函数在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数上是增函数,上是减函数.
(1)求函数的解析式;
(2)若时,恒成立,求实数m的取值范围;
(3)是否存在实数b,使得方程在区间上恰有两个相异实数根,若存在,求出b的范围,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为常数)
(1)当恒成立,求实数的取值范围;
(2)若函数有对称中心为A(1,0),求证:函数的切线在切点处穿过图象的充要条件是恰为函数在点A处的切线.(直线穿过曲线是指:直线与曲线有交点,且在交点左右附近曲线在直线异侧)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(I)若,求函数的单调区间;
(Ⅱ)求证:
(Ⅲ)若函数的图象在点处的切线的倾斜角为,对于任意的,函数的导函数)在区间上总不是单调函数,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,.
(Ⅰ)当时,求曲线处的切线的方程;
(Ⅱ)如果存在,使得成立,求满足上述条件的最大整数;
(Ⅲ)如果对任意的,都有成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案