【题目】如图,在直三棱柱中, 是线段上一点.
点.
(1)确定的位置,使得平面平面;
(2)若平面,设二面角的大小为,求证:
【答案】(1)见解析(2)
【解析】试题分析:(1)当时,可证明平面,再根据平面几何知识求解即可;(2)以、、所在直线分别为轴、轴、轴建立如图所示的空间直角坐标系,求出平面的一个法向量及平面的一个法向量,利用空间向量夹角余弦公式可得结果.
试题解析:(1)当时,∵,∴由射影定理得,∴.
∵平面,∴.
∵,∴平面.
又平面,∴当时,平面平面.
(2)以、、所在直线分别为轴、轴、轴建立如图所示的空间直角坐标系,
则, , .
连接交于点,则为的中点.
∵平面平面,且平面,∴,∴为的中点.
∴, ,
设平面的法向量为,
则,且,
令,可取平面的一个法向量,
而平面的一个法向量为,
∴,∵二面角为锐角,
∴,又,∴.
科目:高中数学 来源: 题型:
【题目】如图:某污水处理厂要在一个矩形污水处理池()的池底水平铺设污水净化管道(是直角顶点)来处理污水,管道越长污水净化效果越好,设计要求管道的的接口是的中点,分别落在线段上。已知米,米,记.
(1)试将污水净化管道的长度表示为的函数,并写出定义域;
(2)若,求此时管道的长度;
(3)当取何值时,污水净化效果最好?并求出此时管道的长度。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于空间直角坐标系中的一点,有下列说法:
①点到坐标原点的距离为;
②的中点坐标为;
③点关于轴对称的点的坐标为;
④点关于坐标原点对称的点的坐标为;
⑤点关于坐标平面对称的点的坐标为.
其中正确的个数是
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学在研究性学习中,关于三角形与三角函数知识的应用(约定三内角所对的边分别是)得出如下一些结论:
(1)若是钝角三角形,则;
(2)若是锐角三角形,则;
(3)在三角形中,若,则
(4)在中,若,则
其中错误命题的个数是 ( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l经过点,则
(1)若直线l与x轴、y轴的正半轴分别交于A、B两点,且△OAB的面积为4,求直线l的方程;
(2)若直线l与原点距离为2,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在五棱锥中,平面平面,且.
(1)已知点在线段上,确定的位置,使得平面;
(2)点分别在线段上,若沿直线将四边形向上翻折,与恰好重合,求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和Sn满足,
(1)求数列{an}的通项公式;
(2)求证:数列{an}中的任意三项不可能成等差数列;
(3)设,Tn为{bn}的前n项和,求证.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以原点为极点, 轴正半轴为极轴建立极坐标系,曲线, 极坐标方程分别为, .
(Ⅰ)和交点的极坐标;
(Ⅱ)直线的参数方程为(为参数),与轴的交点为,且与交于, 两点,求.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com