精英家教网 > 高中数学 > 题目详情
已知函数f(x)对任意的实数x、y都有f(x+y)=f(x)+f(y)-1,且当x>0时,f(x)>1.
(1)求证:函数f(x)在R上是增函数;
(2)若关于x的不等式f(x2-ax+5a)<2的解集为{x|-3<x<2},求f(2009)的值;
(3)在(2)的条件下,设an=|f(n)-14|(n∈N*),若数列{an}从第k项开始的连续20项之和等于102,求k的值.
分析:(1)欲证明函数f(x)在R上是增函数,设x1>x2证明f(x1>f(x2),即可.
(2)先将不等式f(x2-ax+5a)<2转化为f(x_-ax+5a)<f(b),利用函数的单调性脱掉“f”,转化成整式不等式,再结合方程根的定义求解出a,b,最后利用等差数列求出f(2009)的值即可;
(3)设从第k项开始的连续20项之和为Tk,则Tk=ak+ak+1++ak+19.下面对k进行分类讨论,列出关于k的方程,解之即得k值.
解答:(1)证明:设x1>x2,则x1-x2>0,从而f(x1-x2)>1,即f(x1-x2)-1>0.(2分)
f(x1)=f[x2+(x1-x2)]=f(x2)+f(x1-x2)-1>f(x2),
故f(x)在R上是增函数.(4分)
(2)设2=f(b),于是不等式为f(x_-ax+5a)<f(b)
x_-ax+5a<b,即x_-ax+5a-b<0.(6分)
∵不等式f(x2-ax+5a)<2的解集为{x|-3<x<2},
∴方程x2-ax+5a-b=0的两根为-3和2,
于是
-3+2=a
-3×2=5a-b
,解得
a=-1
b=1

∴f(1)=2.(8分)
在已知等式中令x=n,y=1,得f(n+1)-f(n)=1.
所以{f(n)}是首项为2,公差为1的等差数列.
f(n)=2+(n-1)×1=n+1,故f(2009)=2010.(10分)
(3)ak=|f(k)-14|=|(k+1)-14|=|k-13|.
设从第k项开始的连续20项之和为Tk,则Tk=ak+ak+1+…+ak+19
当k≥13时,ak=|k-13|=k-13,Tk≥T13=0+1+2+3+…+19=190>102.(11分)
当k<13时,ak=|k-13|=13-k.
Tk=(13-k)+(12一k)+…+1+0+1+…+(k+6)=k2一7k+112.
令k2-7k+112=102,解得k=2或k=5.(14分)
(注:当k≥13时,ak=|k一13|=k一13,令Tk=20(k-13)+
20×19
2
×1=102
,无正整数解.得11分)
点评:本题主要考查了抽象函数及其应用,考查分析问题和解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ex,直线l的方程为y=kx+b.
(1)求过函数图象上的任一点P(t,f(t))的切线方程;
(2)若直线l是曲线y=f(x)的切线,求证:f(x)≥kx+b对任意x∈R成立;
(3)若f(x)≥kx+b对任意x∈[0,+∞)成立,求实数k、b应满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x、y、m满足|x-m|>|y-m|,则称x比y远离m.
(1)若x2-1比1远离0,求x的取值范围;
(2)对任意两个不相等的正数a、b,证明:a3+b3比a2b+ab2远离2ab
ab

(3)已知函数f(x)的定义域D={{x|x≠
2
+
π
4
,k∈Z,x∈R}
.任取x∈D,f(x)等于sinx和cosx中远离0的那个值.写出函数f(x)的解析式,并指出它的基本性质(结论不要求证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x、y、m满足|x-m|<|y-m|,则称x比y接近m.
(1)若x2-1比3接近0,求x的取值范围;
(2)对任意两个不相等的正数a、b,证明:a2b+ab2比a3+b3接近2ab
ab

(3)已知函数f(x)的定义域D{x|x≠kπ,k∈Z,x∈R}.任取x∈D,f(x)等于1+sinx和1-sinx中接近0的那个值.写出函数f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和单调性(结论不要求证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ex
ex+1

(Ⅰ)证明函数y=f(x)的图象关于点(0,
1
2
)对称;
(Ⅱ)设y=f-1(x)为y=f(x)的反函数,令g(x)=f-1(
x+1
x+2
),是否存在实数b
,使得任给a∈[
1
4
1
3
],对任意x∈(0,+∞).不等式g(x)>x-ax2
+b恒成立?若存在,求b的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•海淀区一模)已知函数f(x)=
1,x∈Q
0,x∈CRQ
,则f(f(x))=
1
1

下面三个命题中,所有真命题的序号是
①②③
①②③

①函数f(x)是偶函数;
②任取一个不为零的有理数T,f(x+T)=f(x)对x∈R恒成立;
③存在三个点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC为等边三角形.

查看答案和解析>>

同步练习册答案