精英家教网 > 高中数学 > 题目详情

【题目】从编号为12341010个大小、形状相同的小球中,任取5个球.如果某两个球的编号相邻,则称这两个球为一组好球”.

1)求任取的5个球中至少有一组好球的概率;

2)在任取的5个球中,记好球的组数为X,求随机变量的概率分布列和均值E(X).

【答案】1;(22.

【解析】

1)从10个球中任取5个球共有种取法,设事件表示“至少有一组好球”,则表示“5个球不相邻”,推导出,由此能求出任取的5个球中至少有一组“好球”的概率.

2)依题意,的可能取值为01234,分别求出相应的概率,由此能求出的分布列和数学期望

1)从10个球中任取5个球共有种取法,

设事件表示“至少有一组好球”,则表示“5个球不相邻”,

任取的5个球中至少有一组“好球”的概率为

2)依题意,的可能取值为01234

的分布列为:

0

1

2

3

4

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知F1F2为椭圆E的左、右焦点,且|F1F2|2,点E.

1)求E的方程;

2)直线l与以E的短轴为直径的圆相切,lE交于AB两点,O为坐标原点,试判断O与以AB为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】实数满足,其中.实数满足.

1)若,且为真,求实数的取值范围;

2)非是非的充分不必要条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,过焦点的直线与抛物线相交于两点,且当直线倾斜角为时,与抛物线相交所得弦的长度为8.

1)求抛物线的方程;

2)若分别过点两点作抛物线的切线,两条切线相交于点,点关于直线的对称点,判断四边形是否存在外接圆,如果存在,求出外接圆面积的最小值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某市管辖的海域内有一圆形离岸小岛,半径为1公里,小岛中心O到岸边AM的最近距离OA2公里.该市规划开发小岛为旅游景区,拟在圆形小岛区域边界上某点B处新建一个浴场,在海岸上某点C处新建一家五星级酒店,在A处新建一个码头,且使得ABAC满足垂直且相等,为方便游客,再建一条跨海高速通道OC连接酒店和小岛,设.

1)设,试将表示成的函数;

2)若OC越长,景区的辐射功能越强,问当为何值时OC最长,并求出该最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,过的焦点且垂直于轴的直线被截得的弦长为,椭圆的离心率为.

1)求椭圆的标准方程;

2)经过右焦点的直线交于两点,线段的垂直平分线与轴相交于点,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(Ⅰ)求的单调区间;

(Ⅱ)当时,试判断零点的个数;

(Ⅲ)当时,若对,都有)成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大型商场的空调在1月到5月的销售量与月份相关,得到的统计数据如下表:

月份

1

2

3

4

5

销量(百台)

0.6

0.8

1.2

1.6

1.8

(1)经分析发现1月到5月的销售量可用线性回归模型拟合该商场空调的月销量(百件)与月份之间的相关关系.请用最小二乘法求关于的线性回归方程,并预测6月份该商场空调的销售量;

(2)若该商场的营销部对空调进行新一轮促销,对7月到12月有购买空调意愿的顾客进行问卷调查.假设该地拟购买空调的消费群体十分庞大,经过营销部调研机构对其中的500名顾客进行了一个抽样调查,得到如下一份频数表:

有购买意愿对应的月份

7

8

9

10

11

12

频数

60

80

120

130

80

30

现采用分层抽样的方法从购买意愿的月份在7月与12月的这90名顾客中随机抽取6名,再从这6人中随机抽取3人进行跟踪调查,求抽出的3人中恰好有2人是购买意愿的月份是12月的概率.

参考公式与数据:线性回归方程,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现将按照如下规律从左到右进行排列:若每一个或“○”占1个位置,即上述图形中,第1位是“□”,第4位是“○”,第7位是 “□”,则在第2017位之前(不含第2017位),“○”的个数为(

□,○,□,○,○,○,□,○,○,○,○,○,□,○,○,○,○,○,○,○

A.1970B.1971C.1972D.1973

查看答案和解析>>

同步练习册答案