精英家教网 > 高中数学 > 题目详情
设函数f(x)=+sinx的所有正的极小值点从小到大排成的数列为{xn}.
(1)求数列{xn}的通项公式.
(2)设{xn}的前n项和为Sn,求sinSn.
(1) xn=2nπ-(n∈N*)    (2) sinSn=
【思路点拨】(1)根据导数,xn的左侧导函数小于0,xn的右侧导函数大于0,求出极小值点.(2)由(1)求出{xn}的前n项和为Sn,再代入sinSn求解.
解:(1)f(x)=+sinx,令f'(x)=+cosx=0,得x=2kπ±(k∈Z),
f'(x)>0⇒2kπ-<x<2kπ+(k∈Z),
f'(x)<0⇒2kπ+<x<2kπ+(k∈Z),
当x=2kπ-(k∈Z)时,f(x)取极小值,
xn=2nπ-(n∈N*).
(2)由(1)得:xn=2nπ-,
Sn=x1+x2+x3+…+xn
=2π(1+2+3+…+n)-=n(n+1)π-.
当n=3k(k∈N*)时,sinSn=sin(-2kπ)=0,
当n=3k-1(k∈N*)时,sinSn=sin=,
当n=3k-2(k∈N*)时,sinSn=sin=-.
所以sinSn=
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知数列{an}的首项为a1=1,其前n项和为Sn,且对任意正整数n有n,an,Sn成等差数列.
(1)求证:数列{Sn+n+2}成等比数列.
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在数列{an}中,已知a1=2,a2=7,an+2等于anan+1(n∈N*)的个位数,则a2013的值是(  )
A.8B.6C.4D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设正项数列{an}的前n项和是Sn,若{an}和{}都是等差数列,且公差相等.
(1)求{an}的通项公式;
(2)若a1a2a5恰为等比数列{bn}的前三项,记数列cn,数列{cn}的前n项和为Tn,求Tn.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等差数列{an}的前n项和Sn满足S3=0,S5=-5.
(1)求{an}的通项公式;
(2)求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知公差不为0的等差数列{an},a1=1,且a2a4-2,a6成等比数列.
(1)求数列{an}的通项公式;
(2)已知数列{bn}的通项公式是bn=2n-1,集合A={a1a2,…,an,…},B={b1b2b3,…,bn,…}.将集合AB中的元素按从小到大的顺序排成一个新的数列{cn},求数列{cn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在1到104之间所有形如2n和3n(n∈N*)的数,它们各自之和的差的绝对值为(lg2≈0.3010)(  )
A.1631B.6542C.15340D.17424

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在等比数列{an}中,a6与a7的等差中项等于48,a4a5a6a7a8a9a10=1286.如果设数列{an}的前n项和为Sn,那么Sn=(  )
A.5n-4B.4n-3
C.3n-2D.2n-1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等差数列{an}的公差不为零,a1=25,且a1,a11,a13成等比数列.
(1)求{an}的通项公式;
(2)求a1+a4+a7+…+a3n-2.

查看答案和解析>>

同步练习册答案