精英家教网 > 高中数学 > 题目详情

如图所示,在正三棱柱ABC-A1B1C1中,AB=1.若二面角C-AB-C1的大小为60°,则点C到平面ABC1的距离为________.

答案:
解析:

  答案:

  思路解析:如图所示,取AB的中点O,连结CO、C1O,则易知∠COC1为二面角CABC1的平面角.则∠COC1=60°.过C作CH⊥C1O于H,则CH⊥平面ABC1,所以CH为所求的距离.

  ∵CO=,∴CH=COsin60°=×


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,在正三棱柱ABC-A1B1C1中,底面边长是2,D是棱BC的中点,点M 是棱BB1的中点,又CM⊥AC1
(Ⅰ)求证:A1B∥平面AC1D;
(Ⅱ)求二面角C-AC1-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,在正三棱柱ABC-A1B1C1中,底面边长为a,侧棱长为
2
2
a
,D是棱A1C1的中点.
(Ⅰ)求证:BC1∥平面AB1D;
(Ⅱ)求二面角A1-AB1-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在正三棱柱ABC-A1B1C1中,所有棱长均为1,求点B1到平面ABC1的距离.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在正三棱柱ABC-A1B1C1中,底面边长是2,D是棱BC的中点,点M在棱BB1上,且BM=
13
B1M,又CM⊥AC1
(Ⅰ)求证:A1B∥平面AC1D;
(Ⅱ)求三棱锥B1-ADC1体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•日照一模)如图所示,在正三棱柱ABC-A1B1C1中,底面边长和侧棱长都是2,D是侧棱CC1上任意一点,E是A1B1的中点.
(I)求证:A1B1∥平面ABD;
(II)求证:AB⊥CE;
(III)求三棱锥C-ABE的体积.

查看答案和解析>>

同步练习册答案