精英家教网 > 高中数学 > 题目详情

【题目】设函数的图象在点处的切线的斜率为,且函数为偶函数.若函数满足下列条件:对一切实数,不等式恒成立.

1求函数的表达式;

2设函数的两个极值点恰为的零点.当时,求的最小值.

【答案】12.

【解析】

试题分析:1借助题设条件运用导数及二次函数的有关知识求解;2借助题设构设函数运用导数的有关知识探求.

试题解析:

1由已知可得

函数为偶函数,

恒成立,

所以

对一切实数,不等式恒成立,

恒成立,

21得,

由题意得

,解得

的零点,

两式相减得,

,从而

记为

上单调递减,

的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某企业开发一种新产品,现准备投入适当的广告费,对产品进行促销,在一年内,预计年销量Q(万件)与广告费x(万件)之间的函数关系为,已知生产此产品的年固定投入为3万元,每年产1万件此产品仍需要投入32万元,若年销售额为,而当年产销量相等。

(1)试将年利润P(万件)表示为年广告费x(万元)的函数;

(2)当年广告费投入多少万元时,企业年利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产一批产品需要原材料500吨,每吨原材料可创造利润12万元,该公司通过设备升级,生产这批产品所需原材料减少了吨,且每吨原材料创造的利润提高了;若将少用的吨原材料全部用于生产公司新开发的产品,每吨原材料创造的利润为万元,其中a>0

1)若设备升级后生产这批A产品的利润不低于原来生产该批A产品的利润,求的取值范围;

2)若生产这批B产品的利润始终不高于设备升级后生产这批A产品的利润,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将圆的一组等分点分别涂上红色或蓝色从任意一点开始按逆时针方向依次记录个点的颜色,称为该圆的一个阶色序,当且仅当两个阶色序对应位置上的颜色至少有一个不相同时称为不同的阶色序若某国的任意两个阶色序均不相同,则称该圆为阶魅力圆3阶魅力圆中最多可有的等分点个数为

A.4 B.6 C.8 D.10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正三棱柱的中点在线段

1求证

2是否存在点使二面角等于若存在的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中常数

1)当,求函数的单调递增区间;

2)设定义在上的函数在点处的切线方程为,若内恒成立,则称为函数类对称点,当时,试问是否存在类对称点,若存在,请至少求出一个类对称点的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,棱形的边长为6, ,.将棱形沿对角线折起,得到三棱锥,点是棱的中点, .

(Ⅰ)求证:∥平面;

(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两人下棋比赛,规定谁比对方先多胜两局谁就获胜,比赛立即结束;若比赛进行完6局还没有分出胜负则判第一局获胜者为最终获胜且结束比赛.比赛过程中,每局比赛甲获胜的概率为,乙获胜的概率为,每局比赛相互独立.求:(1)比赛两局就结束且甲获胜的概率;(2)恰好比赛四局结束的概率;(3)在整个比赛过程中,甲获胜的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的左焦点为,离心率为

(Ⅰ)求椭圆的标准方程;

(Ⅱ)为坐标原点, 为直线上一点,过的垂线交椭圆于 .当四边形是平行四边形时,求四边形的面积。

查看答案和解析>>

同步练习册答案