精英家教网 > 高中数学 > 题目详情
16.已知△ABC中,a,b,c分别为角A,B,C的对应边,A=30°,B=45°,a=7,则边长b为(  )
A.$\frac{7}{2}\sqrt{2}$B.$14\sqrt{2}$C.$7\sqrt{2}$D.$\frac{7}{3}\sqrt{6}$

分析 使用正弦定理即可列出方程解出.

解答 解:由正弦定理$\frac{a}{sinA}$=$\frac{b}{sinB}$得
$\frac{7}{\frac{1}{2}}=\frac{b}{\frac{\sqrt{2}}{2}}$,解得b=7$\sqrt{2}$.
故选C.

点评 本题考查了正弦定理在解三角形中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知角α的终边在直线y=x上,求sinα+cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点为A,上项点为B,M(1,0),N(n,0),|MB|=$\sqrt{2}$,|AM|=3.过点M作直线l(与x轴不重合),直线l与椭圆C相交于P,Q两点,且有NP⊥NQ.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求实数n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.x=1是函数f(x)=ex-m-ln(2x)的极值点,则m的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某个停车场有一排共12个车位,从入口开始依次编号是1号停车位、2号停车位、…、12号停车位.早上来了8辆车,随机地停在了其中8个车位.
(1)这时有一辆体型较大的工程车到达停车场,它需要占据两个相邻的车位,求工程车能停进车位的概率;
(2)求没有三辆车相邻的概率;
(3)如果有4辆车离开之后,又有一辆车开进来,停在离入口最近的空车位,记这个车位的编号是η,求η的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若x,y∈R,且$\left\{\begin{array}{l}x≥1\\ x-2y+3≥0\\ y≥x\end{array}\right.$,则z=x+2y的最大值等于9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数$f(x)=\left\{{\begin{array}{l}{3{x^2}-4,x>0}\\{2,x=0}\\{-1,x<0}\end{array}}\right.$,则f(f(1))=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知数列{an}中,a1=1,且满足an+1=an+2n,n∈N+,则a10=(  )
A.19B.91C.101D.121

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.下列事件是随机事件的是①④(填序号).
①连续两次掷一枚硬币,两次都出现正面向上;
②异性电荷相互吸引;
③在标准大气压下,水在1℃时结冰;
④任意掷一枚骰子朝上的点数是偶数.

查看答案和解析>>

同步练习册答案