【题目】[选修4—5:不等式选讲]
已知函数.
(1)当时,求不等式的解集;
(2)若不等式的解集包含,求的取值范围.
【答案】(Ⅰ) ,或 (Ⅱ)或
【解析】
试题分析:
(1)主要考查了含绝对值不等式的解法.当时,这里可采用零点分段法即可解出不等式的解集.(2)不等式的解集包含,易知当x∈[1,3]时,不等式f(x)≥|x﹣6|恒成立,适当变形为|x﹣a|≥|x﹣6|﹣|x﹣5|=6﹣x﹣(5﹣x)=1,即得|x﹣a|≥1在x∈[1,3]恒成立.
试题解析:
解:(1)当a=3时,求不等式f(x)≥3,即|x﹣3|+|x﹣5|≥3,
∴①,或 ②,或③.
解①求得x≤;解②求得x∈;解③求得x≥.
综上可得,不等式f(x)≥3的解集为{x|x≤,或 x≥}.
(2)若不等式f(x)≥|x﹣6|的解集包含[1,3],
等价于当x∈[1,3]时,不等式f(x)≥|x﹣6|恒成立,
即|x﹣a|+|x﹣5|≥|x﹣6|恒成立,即|x﹣a|≥|x﹣6|﹣|x﹣5|=6﹣x﹣(5﹣x)=1恒成立,即|x﹣a|≥1 恒成立,
∴x﹣a≥1,或 x﹣a≤﹣1恒成立,即a≤x﹣1,或a≥x+1 恒成立,∴a≤0,或a≥4.
综上可得,a≤0,或a≥4.
科目:高中数学 来源: 题型:
【题目】设函数f(x)是定义在R上的偶函数,且f(x+2)=f(2-x),当x∈[-2,0]时,f(x)=,则在区间(-2,6)上关于x的方程f(x)-log8(x+2)=0的解的个数为( )
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,点,点在轴上,点在轴非负半轴上,点满足:
(1)当点在轴上移动时,求动点的轨迹C的方程;
(2)设为曲线C上一点,直线过点且与曲线C在点处的切线垂直,与C的另一个交点为,若以线段为直径的圆经过原点,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的离心率为,以短轴端点和焦点为顶点的四边形的周长为.
(Ⅰ)求椭圆的标准方程及焦点坐标.
(Ⅱ)过椭圆的右焦点作轴的垂线,交椭圆于、两点,过椭圆上不同于点、的任意一点,作直线、分别交轴于、两点.证明:点、的横坐标之积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知直线l:x﹣y+4=0和圆O:x2+y2=4,P是直线l上一点,过点P作圆C的两条切线,切点分别为M,N.
(1)若PM⊥PN,求点P坐标;
(2)若圆O上存在点A,B,使得∠APB=60°,求点P的横坐标的取值范围;
(3)设线段MN的中点为Q,l与x轴的交点为T,求线段TQ长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{an}是等差数列,设数列{bn}的前n项和为Sn,且2bn=b1(1+Sn),bn≠0,又a2b2=4,a7+b3=11.
(1)求{an}和{bn}的通项公式;
(2)令cn=anbn(n∈N*),求{cn}的前n项和Tn
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com