精英家教网 > 高中数学 > 题目详情

【题目】设函数,过点轴的垂线交函数图象于点,以为切点作函数图象的切线交轴于点,再过轴的垂线交函数图象于点,以此类推得点,记的横坐标为

1)证明数列为等比数列并求出通项公式;

2)设直线与函数的图象相交于点,记(其中为坐标原点),求数列的前项和

【答案】1)证明见解析,;(2

【解析】

1)根据导数的几何意义可求得以点为切点的切线方程,代入可求得,由此可得数列为等比数列,根据等比数列通项公式求得结果;

(2)根据向量数量积的坐标运算可求得,利用错位相减法可求得结果.

1)证明:函数

以点为切点的切线方程为:

时,,即

数列是以为首项,为公比的等比数列,.

(2)解:由题意得:

①,

②,

②得:

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】奇函数fx)在R上存在导数,当x0时,fx),则使得(x21fx)<0成立的x的取值范围为(

A.(﹣10)∪(01B.(﹣,﹣1)∪(01

C.(﹣10)∪(1+∞D.(﹣,﹣1)∪(1+∞

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把编号为12345的五个大小、形状相同的小球,随机放入编号为12345的五个盒子里.每个盒子里放入一个小球.

1)求恰有两个球的编号与盒子的编号相同的概率;

2)设恰有个小球的编号与盒子编号相同,求随机变量的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若在点处的切线与直线垂直,求函数点处的切线方程;

2)若对于恒成立,求正实数的取值范围;

3)设函数,且函数有极大值点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】谢宾斯基三角形是一种分形,由波兰数学家谢宾斯基在1915年提出,先作一个正三角形.挖去一个“中心三角形”(即以原三角形各边的中点为顶点的三角形),然后在剩下的小三角形中又挖去一个“中心三角形”,我们用白色代表挖去的面积,那么黑三角形为剩下的面积(我们称黑三角形为谢宾斯基三角形).向图中第5个大正三角形中随机撒512粒大小均匀的细小颗粒物,则落在白色区域的细小颗粒物的数量约是(

A.256B.350C.162D.96

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在多面体中,四边形是正方形,平面的中点.

1)求证:

2)求平面与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是矩形,平面的中点,连接.

1)求证:

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)当时,求函数的最小值;

(2)若时,,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据《人民网》报道,美国国家航空航天局(NASA)发文称,相比20年前世界变得更绿色了,卫星资料显示中国和印度的行动主导了地球变绿.据统计,中国新增绿化面积的来自于植树造林,下表是中国十个地区在去年植树造林的相关数据.(造林总面积为人工造林、飞播造林、新封山育林、退化林修复、人工更新的面积之和)

单位:公顷

地区

造林总面积

造林方式

人工造林

飞播造林

新封山育林

退化林修复

人工更新

内蒙

618484

311052

74094

136006

90382

6950

河北

583361

345625

33333

13507

65653

3643

河南

149002

97647

13429

22417

15376

133

重庆

226333

100600

62400

63333

陕西

297642

184108

33602

63865

16067

甘肃

325580

260144

57438

7998

新疆

263903

118105

6264

126647

10796

2091

青海

178414

16051

159734

2629

宁夏

91531

58960

22938

8298

1335

北京

19064

10012

4000

3999

1053

1)请根据上述数据分别写出在这十个地区中人工造林面积与造林总面积的比值最大和最小的地区;

2)在这十个地区中,任选一个地区,求该地区新封山育林面积占造林总面积的比值超过的概率;

3)在这十个地区中,从退化林修复面积超过一万公顷的地区中,任选两个地区,记X为这两个地区中退化林修复面积超过六万公顷的地区的个数,求X的分布列及数学期望.

查看答案和解析>>

同步练习册答案