精英家教网 > 高中数学 > 题目详情
已知函数f(x)=3sin(2x+
π4
)

(1)求函数f(x)图象的对称轴;
(2)求函数f(x)在区间[0,π]上的单调递增区间.
分析:(1)由正弦函数的对称轴方程,求得x的值,从而得到f(x)图象的对称轴方程.
(2)由正弦函数的单调增区间求出函数的增区间,然后与区间[0,π]去交集求出函数f(x)的单调递增区间.
解答:解:(1)由3x+
π
4
=kπ+
π
2
,k∈Z可得 x=
3
+
π
12
,k∈z.
所以,f(x)图象的对称轴方程为x=
3
+
π
12
,k∈z.
(2)由2kπ-
π
2
≤3x+
π
4
≤2kπ+
π
2
,k∈z,可得
2kπ
3
-
π
4
≤x≤
2kπ
3
+
π
12
,k∈z,
k=0时,函数的单调增区间[-
π
4
π
12
],k=1时函数的单调增区间是[
12
4
].
∴函数f(x)在区间[0,π]上的单调递增区间:[0,
π
4
],[
12
4
].
点评:本题主要考查三角函数的恒等变换及化简求值,复合三角函数的单调性,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
(3-a)x-3 (x≤7)
ax-6??? (x>7)
,数列an满足an=f(n)(n∈N*),且an是递增数列,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-ax
,若f(x)在区间(0,1]上是减函数,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3-2sin2ωx-2cos(ωx+
π
2
)cosωx(0<ω≤2)
的图象过点(
π
16
,2+
2
)

(Ⅰ)求ω的值及使f(x)取得最小值的x的集合;
(Ⅱ)该函数的图象可由函数y=
2
sin4x(x∈R)
的图象经过怎样的变换得出?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|3-
1x
|,x∈(0,+∞)

(1)写出f(x)的单调区间;
(2)是否存在实数a,b(0<a<b)使函数y=f(x)定义域值域均为[a,b],若存在,求出a,b的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x-
π
3
)=sinx,则f(π)
等于(  )

查看答案和解析>>

同步练习册答案