精英家教网 > 高中数学 > 题目详情
如图,设A、B、C是球O面上的三点,我们把大圆的劣弧在球面上围成的部分叫做球面三角形,记作球面三角形ABC,在球面三角形ABC中,OA=1,设,二面角B-OA-C、
C-OB-A、A-OC-B的大小分别为α、β、γ,给出下列命题:
①若,则球面三角形ABC的面积为
②若,则四面体OABC的侧面积为
③圆弧在点A处的切线l1与圆弧在点A处的切线l2的夹角等于a;
④若a=b,则α=β.
其中你认为正确的所有命题的序号是   
【答案】分析:,知球面三角形ABC是球体,故球面三角形ABC的面积==;由,知四面体OABC的面积=3×=,;圆弧在点A处的切线l1在OAB面上与OA垂直,圆弧在点A处的切线l2在OAC面上与OA垂直,故l1与l2夹角等于α;若a=b,则α=β.
解答:解:∵
∴球面三角形ABC是球体,
∴球面三角形ABC的面积==
故①正确;

∴四面体OABC的侧面积=3×=
故②正确;
∵圆弧在点A处的切线l1在OAB面上与OA垂直,
圆弧在点A处的切线l2在OAC面上与OA垂直,
∴l1与l2夹角等于α,不一定等于a,
故③不正确;
若a=b,由图形的对称性知,α=β.故④正确.
故答案为:①②④.
点评:本题考查球面三角形的概率和应用,是基础题.解题时要认真审题,熟练掌握球球面三角形的性质和应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(Ⅰ)如图1,A,B,C是平面内的三个点,且A与B不重合,P是平面内任意一点,若点C在直线AB上,试证明:存在实数λ,使得:
PC
PA
+(1-λ)
PB

(Ⅱ)如图2,设G为△ABC的重心,PQ过G点且与AB、AC(或其延长线)分别交于P,Q点,若
AP
=m
AB
AQ
=n
AC
,试探究:
1
m
+
1
n
的值是否为定值,若为定值,求出这个定值;若不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•成都一模)如图,设A、B、C是球O面上的三点,我们把大圆的劣弧
BC
CA
AB
在球面上围成的部分叫做球面三角形,记作球面三角形ABC,在球面三角形ABC中,OA=1,设
BC
=a,
CA
=b,
AB
=c,a,b.c∈(0,π)
,二面角B-OA-C、
C-OB-A、A-OC-B的大小分别为α、β、γ,给出下列命题:
①若α=β=γ=
π
2
,则球面三角形ABC的面积为
π
2

②若a=b=c=
π
3
,则四面体OABC的侧面积为
π
2

③圆弧
AB
在点A处的切线l1与圆弧
CA
在点A处的切线l2的夹角等于a;
④若a=b,则α=β.
其中你认为正确的所有命题的序号是
①②④
①②④

查看答案和解析>>

科目:高中数学 来源:2010年四川省成都市高考数学一模试卷(文科)(解析版) 题型:解答题

如图,设A、B、C是球O面上的三点,我们把大圆的劣弧在球面上围成的部分叫做球面三角形,记作球面三角形ABC,在球面三角形ABC中,OA=1,设,二面角B-OA-C、
C-OB-A、A-OC-B的大小分别为α、β、γ,给出下列命题:
①若,则球面三角形ABC的面积为
②若,则四面体OABC的侧面积为
③圆弧在点A处的切线l1与圆弧在点A处的切线l2的夹角等于a;
④若a=b,则α=β.
其中你认为正确的所有命题的序号是   

查看答案和解析>>

科目:高中数学 来源:2010年安徽省宿州市灵璧中学高考压轴数学试卷1(理科)(解析版) 题型:解答题

如图,设A、B、C是球O面上的三点,我们把大圆的劣弧在球面上围成的部分叫做球面三角形,记作球面三角形ABC,在球面三角形ABC中,OA=1,设,二面角B-OA-C、
C-OB-A、A-OC-B的大小分别为α、β、γ,给出下列命题:
①若,则球面三角形ABC的面积为
②若,则四面体OABC的侧面积为
③圆弧在点A处的切线l1与圆弧在点A处的切线l2的夹角等于a;
④若a=b,则α=β.
其中你认为正确的所有命题的序号是   

查看答案和解析>>

同步练习册答案