精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax(a>0,a≠1),g(x)=-x2+2x+2,设函数F(x)=min{f(x),g(x)},(min{p,q}表示p,q中的较小值),若F(x)<2恒成立,则a的取值范围是(  )
A、(1,2)
B、(0,1)或(1,2)
C、(1,
2
D、(0,1)或(1,
2
 )
分析:根据函数F(x)=min{f(x),g(x)},分类讨论,利用指数函数、二次函数的图象,即可得出结论.
解答:解:由题意,0<a<1时,F(x)<2恒成立,
a>1时,令-x2+2x+2=2,可得x=2,
利用指数函数,∵F(x)<2恒成立,
∴可得a2<2,
∴a<
2

∴1<a<
2

综上,a的取值范围(0,1)或(1,
2
 ).
故选:D.
点评:本题考查指数函数的综合,考查学生分析解决问题的能力,考查分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案