精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C所对的边分别是a,b,c.己知csinA=
3
acosC.
(Ⅰ)求C;
(Ⅱ)若c=
7
,且sinC+sin(B-A)=3sin2A,求△ABC的面积.
(Ⅰ)∵csinA=
3
acosC,∴由正弦定理,得sinCsinA=
3
sinAcosC
结合sinA>0,可得sinC=
3
cosC,得tanC=
3

∵C是三角形的内角,∴C=60°;
(Ⅱ)∵sinC+sin(B-A)=sin(B+A)+sin(B-A)=2sinBcosA,
而3sin2A=6sinAcosA
∴由sinC+sin(B-A)=3sin2A,得sinBcosA=3sinAcosA
当cosA=0时,∠A=
π
2
,可得b=
c
tanC
=
21
3

可得三角△ABC的面积S=
1
2
bc
=
7
3
6

当cosA≠0时,得sinB=3sinA,由正弦定理得b=3a…①,
∵c=
7
,∠C=60°,c2=a2+b2-2abcosC
∴a2+b2-ab=7…②,
联解①①得a=1,b=3,
∴△ABC的面积S=
1
2
absinC=
1
2
×1×3×sin60°=
3
3
4

综上所述,△ABC的面积等于
7
3
6
3
3
4
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知等差数列满足:.
(1)求数列的通项公式;
(2)设等比数列的各项均为正数,为其前项和,若,求.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△ABC中,a,b,c分别是角A,B,C的对边,a=
6
,b=2,且1+2cos(B+C)=0,则△ABC的BC边上的高等于(  )
A.
2
B.
6
2
C.
6
+
2
2
D.
3
+1
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知△ABC的内角A、B、C所对的边分别为a,b,c,且a=2.
(1)若b=2
3
,角A=30°,求角B的值;
(2)若△ABC的面积S△ABC=3,cosB=
4
5
,求b,c的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△ABC中,A=
π
3
,C=
π
6
,b=2,则此三角形的最小边长是(  )
A.1B.2
3
-2
C.
3
-1
D.
3
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在△ABC中,角A,B,C的对边分别为a,b,c,且a2+c2-b2=
2
3
3
acsinB

(1)求角B的大小;
(2)若b=
3
,且A∈(
π
6
π
2
)
,求a+c的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已在△ABC中,b2-bc-2c2=0,a=
6
,cosA=
7
8
,则△ABC的面积S为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知△ABC中,c-b=1,cosA=
12
13
,S△ABC=30,则a=(  )
A.2B.4C.2
5
D.5

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
3
cos2x+2sinx•sin(x+
π
2
)

(Ⅰ)求f(x)的最小正周期,最大值以及取得最大值时x的集合;
(Ⅱ)若A是锐角△ABC的内角,f(A)=0,b=5,a=7,求△ABC的面积.

查看答案和解析>>

同步练习册答案