精英家教网 > 高中数学 > 题目详情
10.已知x,y为正数,且xy=2,则2x+y的最小值为(  )
A.$3\sqrt{2}$B.3C.$4\sqrt{2}$D.4

分析 利用基本不等式的性质即可得出.

解答 解:∵x,y为正数,且xy=2,即2x•y=4
则2x+y≥$2\sqrt{2xy}$=4,当且仅当2x=y=2时取等号,
∴2x+y的最小值为4.
故选:D.

点评 本题考查了基本不等式的性质,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.设△ABC的内角A,B,C所对的边分别为a,b,c,设S为△ABC的面积,满足S=$\frac{{\sqrt{3}}}{4}({a^2}+{b^2}-{c^2})$,则sinA+sinB的最大值是$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设Sn、Tn分别为等差数列{an}与{bn}的前n项和,若$\frac{S_n}{T_n}=\frac{2n-1}{3n+2},则\frac{a_7}{b_7}$等于(  )
A.$\frac{13}{23}$B.$\frac{27}{44}$C.$\frac{25}{41}$D.$\frac{23}{38}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,E为侧棱PA的中点.
(1)求证:PC∥平面BDE;
(2)若PC⊥PA,PD=AD,求证:平面BDE⊥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知全集U={x∈N+|x<9 },A={1,2,3,4},B={3,4,5}
求:A∩B,A∪B,∁U(A∩B),∁U(A∪B),A∩(∁UB)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在公比大于1的等比数列{an}中,a2=6,a1+a2+a3=26;设cn=an+bn,且数列{cn}是公差为2的等差数列,b1=a1
(1)求数列{an}和{cn}的通项公式;
(2)求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在三角形ABC中,AB=2,AC=4.P是三角形ABC的外心,数量积$\overrightarrow{AP}•\overrightarrow{BC}$等于(  )
A.6B.-6C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知a>0,b>0,c>0,设函数f(x)=|x-b|+|x+c|+a,x∈R.若a=b=c=1,求不等式f(x)<5的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.解不等式:3-2|4x+1|>0.

查看答案和解析>>

同步练习册答案