(本题满分12分)作图(不要求写出作法,请保留作图痕迹)
(1) 画出下图几何体的三视图(尺寸自定);
(2) 画出一个底面直径为4cm,高为2cm的圆锥的直观图
科目:高中数学 来源: 题型:解答题
(12分) 已知四棱锥的三视图如下图所示,是侧棱上的动点.
(1) 求四棱锥的体积;
(2) 是否不论点在何位置,都有?证明你的结论;
(3) 若点为的中点,求二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分9分)
已知几何体A—BCED 的三视图如图所示,其中侧视图和俯视图都是腰长为4的等腰直角三角形,正视图为直角梯形.求:
(1)异面直线DE 与AB 所成角的余弦值;
(2)二面角A—ED—B 的正弦值;
(3)此几何体的体积V 的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(方案二)如图是一个长方体被削去一部分后的多面体的直观图,它的正视图和侧视图已经画出.(单位:cm).
(Ⅰ)在正视图下面,按照画三视图的要求画出该多面体的俯视图;
(Ⅱ)(普通高中做)求三棱锥的体积.
(示范性高中做)求多面体的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图6,已知正三棱柱ABC—A1B1C1中,D是BC的中点,AA1=AB=1。
(1)求证:平面AB1D⊥平面B1BCC1;
(2)求证:A1C//平面AB1D;
(3)求二面角B—AB1—D的正切值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
如图,圆柱OO1内有一个三棱柱ABC-A1B1C1,
三棱柱的底面为圆柱底面的内接三角形,且AB是圆O的直径。
(Ⅰ)证明:平面A1ACC1⊥平面B1BCC1;
(Ⅱ)设AB=AA1。在圆柱OO1内随机选取一点,记该点取自于
三棱柱ABC-A1B1C1内的概率为P。
(i) 当点C在圆周上运动时,求P的最大值;
记平面A1ACC1与平面B1OC所成的角为(0°< 90°)。当P取最大值时,求cos的值。
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
如图是一个正方体的展开图,如果将它还原为正方体,那么AB,CD,EF,GH这四条线段所在的直线是异面直线的有( )
A.1对 | B.2对 | C.3对 | D.4对 |
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
如图,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下列命题正确的是( )
A.平面ABD⊥平面ABC | B.平面ADC⊥平面BDC |
C.平面ABC⊥平面BDC | D.平面ADC⊥平面ABC |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com