精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其导函数为

时,若函数R上有且只有一个零点,求实数a的取值范围;

,点是曲线上的一个定点,是否存在实数使得成立?并证明你的结论.

【答案】(1);(2)见解析.

【解析】

,由题意,令,则,解得,由此能求出时,R上有且只有一个零点

,得,假设存在,则,利用导数性质推导出不存在实数使得成立。

时,

由题意得,即

,则,解得

时,单调弟增,

时,单调递减,

时,,当时,

时,R上有且只有一个零点.

,得

假设存在

则有

,则

两边同时除以,得,即

上单调递增,且

对于恒成立,即对于恒成立,

上单调递增,

对于恒成立,

不成立,

同理,时,也不成立

不存在实数使得成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】【选修4-5:不等式选讲】

已知函数

(Ⅰ)求不等式

(Ⅱ)若的图像与直线围成图形的面积不小于14,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是椭圆C上的一点,椭圆C的离心率与双曲线的离心率互为倒数,斜率为直线l交椭圆CBD两点,且ABD三点互不重合.

1)求椭圆C的方程;

2)若分别为直线ABAD的斜率,求证:为定值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点在以为焦点的双曲线上,过轴的垂线,垂足为,若四边形为菱形,则该双曲线的离心率为( )

A. B. 2 C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,右焦点F是抛物线的焦点,点在抛物线

求椭圆的方程;

已知斜率为k的直线l交椭圆AB两点,,直线AMBM的斜率乘积为,若在椭圆上存在点N,使,求的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,直线与椭圆相交于两点椭圆的上顶点与焦点关于直线对称,且.斜率为的直线与线段相交于点,与椭圆相交于两点.

(Ⅰ)求椭圆的标准方程

(Ⅱ)求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在贯彻中共中央国务院关于精准扶贫政策的过程中,某单位定点帮扶甲、乙两个村各50户贫困户.为了做到精准帮扶,工作组对这100户村民的年收入情况、劳动能力情况、子女受教育情况、危旧房情况、患病情况等进行调查,并把调查结果转化为各户的贫困指标制成下图其中”表示甲村贫困户,“”表示乙村贫困户.

则认定该户为“绝对贫困户”,若则认定该户为“相对贫困户”,若则认定该户为“低收入户”;

则认定该户为“今年能脱贫户”,否则为“今年不能脱贫户”.

1)从甲村50户中随机选出一户,求该户为“今年不能脱贫的绝对贫困户的概率;

2)若从所有“今年不能脱贫的非绝对贫困户”中选3户,用表示所选3户中乙村的户数,求的分布列和数学期望

3)试比较这100户中,甲、乙两村指标的方差的大小(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】人类的四种血型与基因类型的对应为:O型的基因类型为iiA型的基因类型为aiaaB型的基因类型为bibbAB型的基因类型为ab,其中ab是显性基因,i是隐性基因.一对夫妻的血型一个是A型,一个是B型,请确定他们的子女的血型是0,A,BAB型的概率,并填写下表:

父母血型的基因类型组合

子女血型的概率

O

A

B

AB

ai×bi

ai×bb

0

0

aa×bi

0

0

aa×bb

0

0

0

1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车行业是碳排放量比较大的行业之一,欧盟从2012年开始就对二氧化碳排放量超过

型汽车进行惩罚,某检测单位对甲、乙两类型品牌汽车各抽取5辆进行二氧化碳排放量检测,记录如下(单位:):

80

110

120

140

150

100

120

100

160

经测算发现,乙类型品牌汽车二氧化碳排放量的平均值为.

(Ⅰ)从被检测的5辆甲类型品牌车中任取2辆,则至少有1辆二氧化碳排放量超过的概率是多少?

(Ⅱ)求表中,并比较甲、乙两类型品牌汽车二氧化碳排放量的稳定性.

,其中,表示的平均数,表示样本数量,表示个体,表示方差)

查看答案和解析>>

同步练习册答案