精英家教网 > 高中数学 > 题目详情
如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,则塔高AB=
 
考点:解三角形的实际应用
专题:应用题,解三角形
分析:先根据三角形内角和为180°得∠CBD=180°-α-β,再根据正弦定理求得BC,进而在Rt△ABC中,根据AB=BCtan∠ACB求得AB.
解答: 解:在△BCD中,∠CBD=180°-α-β,
由正弦定理得BC=
CDsin∠BDC
sin∠CBD
=
s•sinβ
sin(α+β)

在Rt△ABC中,AB=BCtan∠ACB=
s•sinβtanθ
sin(α+β)

故答案为:
s•sinβtanθ
sin(α+β)
点评:本题以实际问题为载体,主要考查了解三角形的实际应用.正弦定理、余弦定理是解三角形问题常用方法,应熟练记忆.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l过点P(2,3),根据下列条件分别求出直线l的方程:
(1)l在x轴、y轴上的截距之和等于0;
(2)l与两条坐标轴在第一象限所围城的三角形面积为16.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=(x-2)2,x∈[-1,3],函数f(x+1)得单调递减区间为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x2-2x+9,分别求下列条件下的值域.
(Ⅰ)定义域是(3,8];
(Ⅱ)定义域是[-3,2].

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线x-y+3=0被圆x2+y2+2x-2y+F=0截得的弦长为
2
,则该圆的标准方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<
π
2
)图象的相邻两对称轴间的距离为
π
2
,若将函数f(x)的图象向左平移
π
6
个单位后图象关于y轴对称.
(Ⅰ)求使f(x)≥
1
2
成立的x的取值范围;
(Ⅱ)设g(x)=-
1
2
g′(
π
6
)sinωx+
3
cosωx,其中g′(x)是g(x)的导函数,若g(x)=
2
7
,且
π
12
<x<
π
3
,求cos2x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
6x    (x≥0)
2x    (x<0)
则f(f(-1))=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={-1,0,1},B={0,1,2},则A∩B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正四棱锥S-ABCD的所有棱长都等于a,过不相邻的两条侧棱作截面SAC,则截面面积为
 

查看答案和解析>>

同步练习册答案